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Abstract
Cryptography is an important piece in any communication system. Digital signatures are a part of
cryptography that ensures the authenticity and integrity of digital assets, vital properties for any secure
communication. Due to fast advances in post-quantum technologies, the National Institute of Standards
and Technologies started the Post-Quantum Cryptography project to standardise new algorithms and
protocols that are secure against quantum attackers. One of the finalists is the signature scheme FALCON.
We present the first formal specification, in the high-performance language Maude, of FALCON. For this
purpose, we use an existing framework, originally aimed to formally specify and analyse post quantum
key encapsulation mechanism. With the infrastructure provided by the framework, we encode a symbolic
model of the signature scheme’s behaviour and simulate an execution trace.
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1. Introduction

Security is a basic requirement in any information system today, where cryptography has an
important role in fulfilling such needs. A building block of cryptography is a digital signature,
a cryptography element that provides authentication and integrity protection to the system
where it is enforced. The security of the most used digital signature schemes, e.g. Rivest-Shamir-
Adleman (RSA) [1] and Elliptic Curve Digital Signature Algorithm (ECDSA) [2], is based on the
hardness of solving computational problems hard to solve for classic computers, such as the
prime factorization and discrete logarithm problems. Some algorithms could provide solutions
to these hard computational problems. One example is Shor’s prime factorization algorithm [3]
when operating on computers with quantum computing capabilities.

With the race for quantum supremacy at full throttle there is a need for new secure schemes
and protocols that are quantum-resistant. The National Institute of Standards and Technology
(NIST) launched the Post-Quantum Cryptography (PQC) project to encourage the development
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of new protocols resilient to adversaries with access to quantum computing power. So far, at the
time of writing this paper, there have been 4 rounds, where different Public-key Encryption and
Key-establishment Algorithms (KEMs) and Digital Signature Algorithms (DSAs) were submitted
for standardization. The first selection of finalists took place in round 3, where CRYSTALS-Kyber
was the only selected candidate to represent the KEMs section. Moreover, CRYSTALS-Dilithium,
FALCON and SPHINCS+ were the finalists for DSAs. From the three finalists in the DSAs
section we focus on FALCON [4].

In this paper, we present the first steps towards modelling signature schemes by reusing
and adapting a framework previously developed for Key Encapsulation Mechanisms in [5].
Specifically, we show how the framework is adapted to signature schemes and how FALCON
is described in this new framework, obtaining an executable symbolic model that simulates
execution traces. All the specifications presented in this paper can be found in the GitHub
repository at: https://github.com/v1ct0r-byte/PQC-in-Maude/tree/PQ-SIG.

Outline: The rest of the paper is structured as follows. Section 2 lists a series of formal
analysis tools/techniques over post-quantum protocols. Section 3 explains basic concepts on
Maude, the framework we work on and the basic idea of signature schemes. Section 4 presents
the signature scheme detailing the steps in each algorithm. Section 5 settles assumptions for
our symbolic model and displays the Maude specification in greater detail, focusing on the
specification of FALCON. Section 6 gives some concluding remarks and future work.

2. Related Work

Advances in protocol security analysis have been made in the field of cryptography. One
interesting idea is the one proposed at [6], where the author explains several examples of
formal specification of protocols and introduces and explains the symbolic and computational
model analysis approaches. In [7], the authors explore the current literature and papers on
both symbolic and computational analysis of protocols. In this survey, they analyze the results
by combining both types of analysis. This proposal was initially made by [8] to close the gap
between both lines of protocol verification.

Among the various symbolic protocol analysis tools available, we have Maude-NPA [9, 10],
related to the programming language Maude [11, 12, 13]. Maude-NPA has a theoretical basis on
rewriting logic, unification and narrowing and performs a backwards search from a final attack
state to determine whether or not it is reachable from an initial state. Some symbolic tools, such
as ProVerif [14, 15], are based on an abstract representation of a protocol using Horn clauses.
The verification of security properties is done by reasoning on these representative clauses.
Other symbolic tools, such as Tamarin [16, 17], are based on constraint solving to perform an
exhaustive, symbolic search for execution traces. Furthermore, other symbolic tools such as
Scyther [18] or CPSA [19] attempt to enumerate all the essential parts of the different possible
executions of a protocol. Also, AKISS [20] or the DEEPSEC prover [21] are other tools mostly
used to decide equivalence properties.

Some related work can be found for the symbolic security analysis of protocols with quantum
features. For example, the authors of [22] build a model of IKEv2 on a classical setting and



then perform some analysis on it for seven properties, all of it using the Tamarin prover. With
this first symbolic analysis, they prove their model to be correct and corroborate previous
results by other authors. Later, they extended the model with the improvements included in
the latest extension of IKEv2 in order to include a quantum-resistant key exchange. With this
extension, they perform a new analysis, where all properties hold, verifying the security of the
new extension.

Another paper performing symbolic analysis of post-quantum protocols is [23]. The authors
use the recently published tool SAPIC+ to analyze the Ephemeral Diffie Hellman Over COSE
(EDHOC) protocol, on its 12th draft version. With SAPIC+ they can automatically transform
their model to a suitable one in Tamarin, ProVerif or DEEPSEC respective syntax. This allows
the authors to take advantage of the strength of each tool to perform analysis over their modular
composed model of the protocol. With the analysis, they discover several flaws and report them
to the team of EDHOC. The authors proposed some fixes, validated them and the proposal was
accepted into the 14th draft version of the protocol.

In [24] a variant for a handshake protocol from the WireGuard VPN protocol with post-
quantum capabilities is presented. They perform such adaptation by replacing the previous
Diffie-Hellman-based handshake with key-encapsulation mechanisms. The authors verify
the security of their proposal with symbolic and computational proofs. On the one hand,
the symbolic proofs verify more security properties than the computational proofs and are
computer-verified. On the other hand, computational proofs give stronger security guarantees
as the proof makes less idealizing assumptions.

The closest works to our contributions in this paper are [25, 26, 27, 28, 5]. [25] provides a
first approximation on the symbolic specification of post-quantum protocols in Maude-NPA.
The authors decided to specify the Post-Quantum TLS protocol primitives and execution trace.
This type of work is interesting and necessary to us because it demonstrates the capability
of Maude-NPA, and Maude, to verify more advanced schemes automatically. In the extended
version, [26], the authors report some of the experimental results of formal verification/analysis
over Transport Layer Security using a parallel version of Maude-NPA. [27, 28] present the first
symbolic security analyses of a collection of post-quantum protocols. These analyses served as
guidelines for the developments presented in [5]. The main differences of our paper with [5]
are: (i) we focus on signature schemes, (ii) the three main algorithms are modified to represent
the new steps and (iii) communication now takes place in only one way due to the nature of
digital signature protocols.

Finally, regarding the post-quantum signature scheme FALCON, as far as the authors know
there are no formal specifications or analyses in the literature.

3. Preliminaries

The section briefly introduces the language used to specify our model, Maude. Moreover, a
high-level view of the framework used to specify the signature schemes is explained. Finally,
an explanation of the nature and general behaviour of signature schemes is given.



3.1. Maude

Maude [12, 11] is a high-level programming language and system implementing rewriting
logic [29]. Rewriting logic is ideally suited to specify and execute computational systems in a
simple and natural way. Some examples are the works in Petri nets [30], process calculus [31],
object-based systems [32], asynchronous hardware [33], a mobile ad hoc network protocol [34],
cloud-based storage systems [35], web browsers [36], programming languages with threads
[37], distributed control systems [38] and models of mammalian cell pathways [39, 40].

Rewriting logic has a sub-logic called membership equational logic. This sub-logic defines
a system’s deterministic parts using functional modules. In contrast, Maude system modules
represent concurrent systems as conditional rewrite theories that model a nondeterministic
system which may never terminate and where the notion of a computed value may be mean-
ingless. In this concurrent system, the membership equational sub-theory defines the states
of such a system as the elements of an algebraic data type, such as terms in an equivalence
class associated with cryptography properties. We can call this aspect the static part of the
specification. Instead, its dynamics, i.e., how states evolve, are described by the transition rules,
which specify the possible local concurrent transitions of the system.

In the case of analysis, Maude provides a series of tools to analyze specified models. The most
basic form of system analysis is illustrated by the search command in Maude. The command
performs reachability analysis from an initial state to a target state, searching for states that
violate the invariant. If the invariant fails to hold, it will do so for some finite sequence of
transitions from the initial state, which will be uncovered by the search command above since
all reachable states are explored in a breadth-first manner. If the invariant does hold, we may be
lucky and have a finite state system, in which case the search command will report failure to
find a violation of the invariant. However, the search will never terminate if an infinite number
of states are reachable from the initial state. Moreover, under the assumption that the set of
states reachable from an initial state is finite, Maude also supports explicit-state model checking
verification of any properties in linear-time temporal logic (LTL) through its LTL model checker.

3.2. Framework

Our work is developed on the framework proposed from [5]. The framework’s purpose is to
ease the specification of Key Encapsulation Mechanism (KEMs) in a modular way, splitting the
different components into modules. Moreover, with the specifications at hand, the framework
allows the user to run analyses such as invariant analysis or model checking of properties. In [5],
the authors present three case studies where Kyber, Classic McEliece and BIKE are modelled and
analysed. These KEMs were candidates of the same round but under the Public-key Encryption
and Key-establishment Algorithm section.

A general picture of the framework is given in Figure 1. There are different modules in
the framework, depicted by the colours of the box, and inclusion relations between modules
are represented by arrows. Functional modules are in blue, and system modules are in red.
The data structures and main algorithms (KeyGen, Enc and Dec) are represented in functional
modules through symbols and equations, e.g. DATA-TYPES module specifies the different data
types and their properties the scheme handles. Functional module MODEL-CONFIGURATION



serves as a basis for the system module, defining the structure upon which the behaviour
of the scheme will be specified later. The general configuration handles participants in the
protocol, a network for message passing between the participants, and lists of contact symbols
to be used as keys and values in the symbolic computations. Finally, everything blends in the
system module KEM. There, the communication actions of honest participants and intruders are
represented by transition rules between states of the general configuration. Thanks to the data
and cryptography properties defined through an equational theory in the functional modules,
symbolic simulations of the protocol can be performed.

DATA-TYPES

KEM

KEM-KEYGEN KEM-ENC KEM-DEC

MODEL-CONFIGURATION

KEM-HASH-OPERATIONS

Figure 1: Overview of the framework, extracted from [5], used to specify and analyze post-quantum
key encapsulation mechanisms in a modular way.

3.3. Signature schemes

A signature scheme is a mathematical scheme that uses asymmetric cryptography to verify the
authenticity of digital assets, e.g. messages or documents. The asymmetric cryptography takes
place in the form of a pair of keys, one public and one private. As an overview, the private key
is used to sign the asset. Meanwhile, the public key, known by the other participant, is required
to verify the validity of the generated signature. Signature schemes provide a mechanism for
participants to verify that a message comes from someone they know, given that they know the
public key of the sender.

Let’s see an example of a general flow of a signature scheme. Figure 2 depicts a network
diagram between two participants, Alice and Bob. The participants perform a series of actions
depending on their role in the signature scheme. Let us suppose that Alice initiates the signature
process since she wants to send a message, our digital asset, to Bob. To achieve this, Alice first
needs to generate a pair of keys, a publicly known key and a secret key. After generating the





The algorithm to sign some digital assets, Sign, needs the digital asset in question and the
private key. Note that, in principle, the algorithm would also receive a certain bound 𝛽, but
we simplified the specification based on the assumptions given in Section 5.1. First, a random
value 𝑟 is uniformly sampled, to which the message to sign is concatenated and given to a hash
operation to produce a value 𝑐. This hash value 𝑐 is used along the components of the secret key
to compute a pair of values 𝑠1 and 𝑠2. Finally, 𝑠2 is compressed to serve as a component of the
signature along with the random value 𝑟. Thus, the signature 𝑠𝑖𝑔 = (𝑟 , 𝑠) is the pair of values of
the uniformly sampled 𝑟 and the compressed value 𝑠2.

The verification algorithm, Verify, uses the sent asset along with its signature, together with
the public key of the sender. Similar to the signing algorithm, a bound 𝛽 is needed, but we omit
it due to the assumptions given in Section 5.1. The verification procedure is as follows. The
value 𝑐 is recomputed using the received message 𝑚with the second component of the signature,
i.e. the salt 𝑟. Then, values 𝑠1 and 𝑠2 are recomputed based on the recomputed value 𝑐. The
value for 𝑠2 is obtained through the decompression of the compressed value in 𝑠. Meanwhile, 𝑠1
depends on the recomputed values of 𝑐 and 𝑠2, plus the public key, to be recomputed using the
formula in step 3. If the recomputed values 𝑠1 and 𝑠2 match the original ones then the signature
is proven to be valid for the received message 𝑚. Otherwise, the signature is rejected and the
validity of the message can not be proven valid.

pk

(m, sig)

Figure 3: Falcon internal algorithms adapted from [4].



5. Formal specification with Maude

This section takes a closer look at the formal specification built in Maude. First, a series of
assumptions over the model are made so we can abstract from computational requirements and
focus on the symbolic behaviour, easing the specification. Then we explain how we used the
existing framework to define the different rules, and how the equational theory represents the
cryptography properties making the specification executable.

5.1. Assumptions

When symbolically modelling a protocol one can abstract himself from computational aspects
to make the specifications simpler and easier to understand. Such abstractions come at a cost,
making the model less representative of what really happens in the real world, but facilitating the
reasoning of the intended behaviour. The assumptions we make for our symbolic specification
over the computational model are:

• Any generated polynomials f, g, F and G always satisfy the equation 𝑓 𝐺 − 𝑔𝐹 = 𝑞 mod 𝜙.
This helps to encapsulate on the respective symbolic values any polynomial that will
satisfy the equation.

• The signature and verification algorithms operate always in the bound given by their
parameter 𝛽, thus it is not deemed necessary in the specification of these algorithms.
The assumption allows us to avoid specifying the parameter in algorithms for signature
generation and validation, easing the procedure. The main loss would be the symbolic
model’s fidelity over an actual implementation, but this can apply to most kinds of
assumptions given their nature.

• The correctness of the encodings s1 and s2 in signature and validation algorithms. In
other words, signature validation of a well-constructed signature for a valid message does
not fail. This assumption allows us to focus on one of the outcomes of the validation
algorithm, i.e. the case in which the signature is proven valid, skipping what would
happen if the signature is rejected.

• Modulus operation over q is equal to modulus operation over (q, 𝜙). This is one of the
most important assumptions we have made, since it will allow us to model the relation
𝑠1 + 𝑠2ℎ = 𝑐 mod (𝜙, 𝑞) to later obtain 𝑠1 as the equivalent equality 𝑐 − 𝑠2ℎ mod 𝑞 = 𝑠1.

5.2. Code specification

The framework from [5] serves as a perfect frame for specifying signature schemes. The main
differences fall in (i) the participants’ behaviour, since now messages go only one way through
the communication channel, and (ii) the three main algorithms and their related modules. In
the case of the communication, the rules used to send and receive messages are similar in
both KEMs and DSAs. However, the main algorithms in digital signature schemes differ in
content and application from those of KEMs, thus their modules hold new declarations to use
in the redefined rules. We now dive into the details of each of the main algorithms of FALCON
specified in Maude. Having in mind Figure 3 will help in the explanations.



5.2.1. KeyGen

Similar to KEMs, signature schemes require a key generation algorithm to provide a pair of
keys. We have defined in module FALCON-KEYGEN, partially shown in Figure 4, the necessary
symbolic values and operations for this algorithm. Specifically, we have defined operator
constants phi and q to represent any possible value of 𝜙 and 𝑞 respectively. The generator
of polynomials 𝑁𝑇𝑅𝑈𝐺𝑒𝑛 is declared and defined through the equation to return a list of
polynomials 𝑓 , 𝑔, 𝐹 and 𝐺, which are symbolic representations of any possible combination of
them when receiving the constants phi and q as parameters. Furthermore, operations regarding
Fast Fourier Transformation (FFT), the product between matrices and ffLDL have also been
defined.

fmod FALCON-KEYGEN is
...
--- Sample values for KeyGeneration
op phi : -> Polynomial .
op q : -> Nat .

--- Sampler of values f, g, F and G
op NTRUGen : Polynomial Nat -> List{Data} .
ops f g F G : -> Polynomial .

eq NTRUGen(phi, q) = (f g F G) .

--- Matrix of a set of polynomials (this is to construct B)
op mat : List{Data} -> Matrix .

--- Fast Fourier Transformation
op FFT : Matrix -> Polynomial .
op FFT : Polynomial -> Polynomial .

--- Matrix product
op _x_ : Polynomial Polynomial -> Matrix .

--- Fast Fourier LDL
op ffLDL : Matrix -> Polynomial .

endfm

Figure 4: Functional module to declare and define values and operations to perform the key generation
in FALCON.

The rule for key generation requires two samples from different groups of samples available
as Figure 5 shows in the first line. Specifically, sample values for 𝜙 and 𝑞 from the pools phis and
qs are taken. These values serve as the basics for the construction of the public and secret keys.
The conditions of the conditional rule KeyGen serve as representations for some of the internal
steps in the algorithm. The first step is the generation of a list of polynomials L through function
NTRUGen on the sampled values SAM1 and SAM2. Then, we collapse some of the specification



steps in the definition of the secret key SK. The secret key is defined in this second step as a
pair of elements. The first element of the pair is the result of applying FFT over the resulting
matrix from the elements of L, i.e. f, g, F and G. The second element of the pair is the product
between ffLDL over the first element of the pair with that same element. Finally, the public key
is defined as the product of the second element of L and the inverse of the first element of L,
modulus the sampled value for 𝑞.

crl [KeyGen] : {phis(SAM1, CONT1), qs(SAM2, CONT2), CONT3}
< (ID1[emptyK]peer(ID2)) PS >
net(MSGS)
=>
{phis(CONT1), qs(CONT2), CONT3}
< (ID1[publicKey(ID1,PK) ; secretKey(ID1,SK)]

qI(ID1,SAM2), phiI(ID1,SAM1), peer(ID2)) PS >
net(MSGS)
if L := NTRUGen(SAM1,SAM2) /\

SK := ([FFT(mat(L)),ffLDL(FFT(mat(L)) x FFT(mat(L)))]) /\
PK := (elem(2,L) p* inv(elem(1,L))) mod SAM2 /\
ID1 =/= ID2 .

Figure 5: Conditional rule for the specification of a participant applying the KeyGen algorithm.

5.2.2. Sign

Signature schemes require operations to sign the digital asset, in this case, a message. To this
end, we defined a functional module named FALCON-SIGN, depicted in Figure 6. Similar to
module FALCON-KEYGEN, the module stores the declarations of sample values necessary for
the signature, as well as operations. Constant values are declared to represent the salt 𝑟 and
message 𝑚. Furthermore, operators s1 and s2 symbolically represent any value for 𝑠1 and 𝑠2
respectively. Regarding operations, the sampling procedure ffSampling and the inverse Fast
Fourier Transformation invFFT are declared, plus the second one is also defined to return the
pair of values s1 and s2. Finally, an equation representing the property 𝑠1 + 𝑠2ℎ = 𝑐 mod 𝑞
is given. This will prove to be very useful when trying to validate the signature in the Verify
algorithm.

Figure 7 depicts the rule thatmodels the behaviour of a participant applying the Sign algorithm.
The initial requirements for the rule to apply over a participant are: (i) there is some message
to be created, (ii) there is a sample value for r available and (iii) the participant has a secret
key and a value q obtained from the key generation algorithm. Then, the conditions of the
rule specify how the components are defined following the specification of FALCON. The first
step is to create a hash value c from the message STR and the salt r. In the next two steps, a
preimage of c is stored in t and is given as a parameter to ffSampling along the secret key.
The result is then put in a formula, following the pattern on the right-hand side of the equation
for invFFT in Figure 6. This allows the final step to return the pair of short polynomials s1 and



fmod FALCON-SIGN is
...
--- Sample values for r
op r : -> Nat .

--- Sample values for messages
op m : -> String .

--- Fast Fourier Sampling
op ffSampling : Polynomial Polynomial -> Polynomial .

--- Constant values to represent an instance of s_1 and s_2
ops s1 s2 : -> Polynomial .

--- Inverse Fast Fourier Transformation
op invFFT : Polynomial -> Pair .
eq invFFT((P1:Polynomial p- P2:Polynomial) p* FFT(M1:Matrix)) = ([s1,s2]) .

--- Equation specifiyng equality "s1 + s2h = c mod (q)"
eq (P1:Polynomial p- (s2 p* P2:Polynomial)) mod N:Nat = s1 .

endfm

Figure 6: Functional module to declare and define values and operations to sign a message in FALCON.

s2. Finally, a signature associated with STR is placed in the contents of the participant. This
signature is composed of the sampled random salt r and the compressed value of s2. Take note
that the second component is compressed with a value called SBYTELEN. This symbolic constant
is defined to represent the value of the byte length of s.

crl [Sign] : {ms(str(STR), CONT1), rs(SAM1, CONT2), CONT3}
< (ID1[secretKey(ID1,SK) ; KS1]qI(ID1,Q), CONT4) PS >
net(MSGS)
=>
{ms(CONT1), rs(CONT2), CONT3}
< (ID1[KS1]sig(STR,SAM1,Compress(second(Ss),SBYTELEN)),

mI(ID1,STR), qI(ID1,Q), CONT4) PS >
net(MSGS)
if c := HashToPoint(SAM1 || STR, Q, n) /\

t := [FFT(c), FFT(0)] p* inv(first(SK)) /\
z := ffSampling(t, second(SK)) /\
s := (t p- z) p* first(SK) /\
Ss := invFFT(s) .

Figure 7: Conditional rule for the specification of a participant applying the Sign algorithm.



5.2.3. Verify

The last algorithm in the scheme, Verify, is depicted with the conditional rule of the same name
in Figure 8. The participant must be peers with another one and have received both a public key
and a message along with its corresponding signature from that peer. Now, similar to the Signing
algorithm a hash value c of the message is computed. As the condition shows, the random
value R is obtained from the first component of the signature pair. Then, the recomputation
of values s2 and s1 takes place. On the one hand, obtaining the value of s2 is straightforward
since P = Compress(s2, SBYTELEN). Through the equation Decompress(Compress(S,N),N)
= S, where S is some polynomial value and N is some numeric value, we obtain s2. On the other
hand, the value of s1 requires an equational theory based on a relation between values. The
specific relation is given by the equality 𝑠1 + 𝑠2ℎ = 𝑐 mod (𝜙, 𝑞) available in Algorithm 10 in [4],
which we translated into the equivalent equation 𝑐 − 𝑠2ℎ mod (𝜙, 𝑞) = 𝑠1 by leaving 𝑠1 on the
right side alone. This equation makes explicit the relation between the hash 𝑐, the public key ℎ
and the pair of values 𝑠1 and 𝑠2. The last condition models the check that the computed values
must be equal to those used during the signing, thus verifying the signature of the message.

crl [Verify] : {CONT1}
< (ID1[publicKey(ID2, p mod Q) ; KS1]

mI(ID2,STR), sig(STR,R,P), peer(ID2), CONT2) PS >net(MSGS)
=>
{CONT1}
< (ID1[KS1]mI(ID2,STR), peer(none), CONT2) PS >
net(MSGS)
if c := HashToPoint(R || STR, Q, n) /\

S2 := Decompress(P, SBYTELEN) /\
h := p mod Q /\
S1 := (c p- (S2 p* h)) mod Q /\
(S1 == s1) /\ (S2 == s2) .

Figure 8: Conditional rule for the specification of a participant applying the Verify algorithm.

5.2.4. Execution

To prove termination of our formal model we run the rewrite command to see if the ini-
tial state ends in a state where two honest participants, Alice and Bob, apply the specified
rules. Figure 9 shows the result of applying the said command over initial state init1,
which is defined as phis(phi), qs(q), ms(str(m)), rs(r)< (Alice[emptyK]peer(Bob))
(Eve[emptyK]peer(none)) (Bob[emptyK]peer(Alice)) >net(emptyM), where from left to
right it defines a configuration with: (1) a set of samples, each with one element available, (2)
a set of participants with no keys and two of them set to begin the protocol between them,
and (3) an empty network of messages, i.e. there is no previous history of message exchanges.
When applying the command we get a new configuration where Alice and Bob finished the
communication between them, thus they are no longer peers and Bob has the message Alice



wanted to send him. With it we have proven termination, a liveness property, of the model. We
do not prove any other properties, and leave them for future work.

Figure 9: Execution of the rewrite command over an initial state init1 to check if the symbolic
specification represents an execution of the signature scheme FALCON.

6. Conclusion and future work

We provide a first approach on the formal specification of post-quantum signature schemes.
Specifically we adapted the framework from [5] to serve as a tool for the specification of
signature schemes. The post-quantum signature scheme FALCON served as our case study
to show the feasibility of the Maude language to represent the behaviour of post-quantum
signature schemes along with their cryptography properties.

This work serves as a first step towards the formal verification of signature schemes. Thus, as
future work we plan to use explicit state model checking for the verification of invariants and
LTL Model Checking to check if any interesting property holds in the specified symbolic model.

References

[1] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-
key cryptosystems, Communications of the ACM 21 (1978) 120–126.

[2] W. J. Caelli, E. P. Dawson, S. A. Rea, Pki, elliptic curve cryptography, and digital signatures,
Computers & Security 18 (1999) 47–66.

[3] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer, SIAM review 41 (1999) 303–332.



[4] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset,
G. Seiler, W. Whyte, Z. Zhang, Falcon: Fast-fourier lattice-based compact signatures over
ntru (2020).

[5] V. García, S. Escobar, K. Ogata, S. Akleylek, A. Otmani, Modelling and verification of
post-quantum key encapsulation mechanisms using maude, PeerJ Computer Science 9
(2023) e1547.

[6] B. Blanchet, Security protocol verification: Symbolic and computational models, in:
International Conference on Principles of Security and Trust, Springer, 2012, pp. 3–29.

[7] V. Cortier, S. Kremer, B. Warinschi, A survey of symbolic methods in computational
analysis of cryptographic systems, Journal of Automated Reasoning 46 (2011) 225–259.

[8] M. Abadi, P. Rogaway, Reconciling two views of cryptography (the computational sound-
ness of formal encryption), Journal of cryptology 15 (2002) 103–127.

[9] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic protocol analysis modulo
equational properties, in: Foundations of Security Analysis and Design V, Springer, 2009,
pp. 1–50.

[10] S. Escobar, C. Meadows, J. Meseguer, A rewriting-based inference system for the nrl
protocol analyzer and its meta-logical properties, Theoretical Computer Science 367 (2006)
162–202.

[11] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, R. Rubio,
C. Talcott, Maude Manual (version 3.3.1), Technical Report, SRI International, 2023. URL:
http://maude.cs.illinois.edu.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. M. Oliet, J. Meseguer, C. Talcott, All About Maude
- A High-Performance Logical Framework: How to Specify, Program, and Verify Systems
in Rewriting Logic, Lecture Notes in Computer Science, Springer, 2007. URL: http://dx.doi.
org/http://dx.doi.org/10.1007/978-3-540-71999-1. doi:10.1007/978-3-540-71999-1.

[13] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Rubio, C. Talcott, Program-
ming and symbolic computation in maude, Journal of Logical and Algebraic Methods in
Programming 110 (2020) 100497.

[14] B. Blanchet, B. Smyth, V. Cheval, M. Sylvestre, Proverif 2.00: automatic cryptographic
protocol verifier, user manual and tutorial, Version from (2018) 05–16.

[15] B. Blanchet, V. Cheval, V. Cortier, Proverif with lemmas, induction, fast subsumption, and
much more, in: 2022 IEEE Symposium on Security and Privacy (SP), IEEE, 2022, pp. 69–86.

[16] S. Meier, B. Schmidt, C. Cremers, D. Basin, The tamarin prover for the symbolic analysis of
security protocols, in: International conference on computer aided verification, Springer,
2013, pp. 696–701.

[17] D. Basin, C. Cremers, J. Dreier, R. Sasse, Tamarin: verification of large-scale, real-world,
cryptographic protocols, IEEE Security & Privacy 20 (2022) 24–32.

[18] C. J. Cremers, The scyther tool: Verification, falsification, and analysis of security protocols,
in: International conference on computer aided verification, Springer, 2008, pp. 414–418.

[19] J. Ramsdell, J. Guttman, CPSA4: A cryptographic protocol shapes analyzer,
https://github.com/mitre/cpsaexp, 2018.

[20] I. Gazeau, S. Kremer, Automated analysis of equivalence properties for security protocols
using else branches, in: Computer Security–ESORICS 2017: 22nd European Symposium
on Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,



Part II 22, Springer, 2017, pp. 1–20.
[21] V. Cheval, S. Kremer, I. Rakotonirina, The DEEPSEC prover, in: International Conference

on Computer Aided Verification, Springer, 2018, pp. 28–36.
[22] S.-L. Gazdag, S. Grundner-Culemann, T. Guggemos, T. Heider, D. Loebenberger, A formal

analysis of IKEv2’s post-quantum extension, in: Annual Computer Security Applications
Conference, 2021, pp. 91–105.

[23] C. Jacomme, E. Klein, S. Kremer, M. Racouchot, A comprehensive, formal and automated
analysis of the edhoc protocol, in: USENIX Security’23-32nd USENIX Security Symposium,
2023.

[24] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, P. R. Zimmermann, Post-quantum wireguard,
in: 2021 IEEE Symposium on Security and Privacy (SP), IEEE, 2021, pp. 304–321.

[25] D. D. Tran, C. M. Do, S. Escobar, K. Ogata, Hybrid post-quantum tls formal specification in
maude-npa-toward its security analysis?, Proceedings http://ceur-ws.org ISSN 1613 (2022)
0073.

[26] D. D. Tran, C. M. Do, S. Escobar, K. Ogata, Hybrid post-quantum transport layer security
formal analysis in maude-npa and its parallel version, PeerJ Computer Science 9 (2023)
e1556.

[27] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, A. Otmani, Formal specification and model
checking of lattice-based key encapsulation mechanisms in Maude, in: Rewriting Logic
and its Applications 14th International Workshop, WRLA 2022, 2022, p. 26.

[28] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, A. Otmani, Formal specification and model
checking of saber lattice-based key encapsulation mechanism in Maude, in: Proceedings of
the 34th International Conference on Software Engineering and Knowledge Engineering,
2022.

[29] J. Meseguer, Conditional rewriting logic as a united model of concurrency, Theor. Comput.
Sci. 96 (1992) 73–155. URL: https://doi.org/10.1016/0304-3975(92)90182-F. doi:10.1016/
0304-3975(92)90182-F.

[30] M.-O. Stehr, J. Meseguer, P. C. Ölveczky, Rewriting logic as a unifying framework for petri
nets, in: Unifying Petri Nets, Springer, 2001, pp. 250–303.

[31] N. Martí-Oliet, J. A. Verdejo-López, Implementing CCS in Maude, in: Actas de las VIII
Jornadas de Concurrencia: Cuenca, 14 a 16 de junio de 2000, Universidad de Castilla-La
Mancha, 2000, pp. 81–96.

[32] J. Meseguer, A logical theory of concurrent objects and its realization in the Maude
language, in: G. Agha, P. Wegner, A. Yonezawa (Eds.), Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993, pp. 314–390.

[33] M. Katelman, S. Keller, J. Meseguer, Rewriting semantics of production rule sets, Journal
of Logic and Algebraic Programming 81 (2012) 929–956.

[34] S. Liu, P. C. Ölveczky, J. Meseguer, Modeling and analyzing mobile ad hoc networks in
Real-Time Maude, Journal of Logical and Algebraic Methods in Programming (2015).

[35] R. Bobba, J. Grov, I. Gupta, S. Liu, J. Meseguer, P. Ölveczky, S. Skeirik, Design, Formal
Modeling, and Validation of Cloud Storage Systems using Maude, in: R. H. Campbell, C. A.
Kamhoua, K. A. Kwiat (Eds.), Assured Cloud Computing, J. Wiley, 2018, pp. 10–48. URL:
http://hdl.handle.net/2142/96274.

[36] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, Y.-M. Wang, A systematic approach to uncover



security flaws in gui logic, in: 2007 IEEE Symposium on Security and Privacy (SP’07),
IEEE, 2007, pp. 71–85.

[37] J. Meseguer, G. Roșu, The rewriting logic semantics project, Theoretical Computer Science
373 (2007) 213–237.

[38] K. Bae, J. Meseguer, P. C. Ölveczky, Formal patterns for multirate distributed real-time
systems, Science of Computer Programming 91 (2014) 3–44.

[39] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, K. Sonmez, Pathway logic:
Symbolic analysis of biological signaling, in: Biocomputing 2002, World Scientific, 2001,
pp. 400–412.

[40] C. Talcott, S. Eker, M. Knapp, P. Lincoln, K. Laderoute, Pathway logic modeling of protein
functional domains in signal transduction, in: Biocomputing 2004, World Scientific, 2003,
pp. 568–580.




