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Abstract
OpenPGP is an open standard widely used for encrypting and decrypting communication data. Because
the security of the current public-key algorithms is dangered by the rapid advancement of quantum
computers, a post-quantum extension of the OpenPGP protocol has been proposed in which tradi-
tional public-key primitives based on elliptic curve cryptography (ECC) are used in combination with
CRYSTALS-Kyber and CRYSTALS-Dilithium, two presumed quantum-resistant schemes. This paper
presents a formal analysis of the OpenPGP’s post-quantum extension with Maude, a formal specification
language and a high-performance tool. We model the protocol in Maude as a state machine with the pres-
ence of two honest participants together with an active attacker who can intercept network connections
and specifically, break the ECC-based public-key algorithms. The security properties under analysis are
(1) secrecy of messages and (2) authenticity of messages. By using the Maude search functionality, we
verify that the protocol enjoys (1) and (2) up to depths 13 and 11, respectively.
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1. Introduction

OpenPGP [1, 2] is an open standard of the Pretty Good Privacy (PGP) security program, a
popular system used for encrypting and decrypting communications, preventing unwanted
individuals from eavesdropping. The most widely used application of the OpenPGP protocol is
to allow individuals to exchange emails securely by encrypting and decrypting their contents.
Besides, OpenPGP also supports protecting private texts, files, and even whole disk partitions.
OpenPGP supports many public-key encryption and digital signature algorithms. Initially, the
RSA algorithm was used as the public-key encryption scheme. To protect a message, the sender
encrypts it with a random session key that is then encrypted by the receiver’s RSA public key.
Only the recipient can decrypt the session key by using the RSA private key and uses it to
decrypt the encrypted message. Over time, to meet the security requirement, the RSA key
size was increased, which made it lose efficiency. Elliptic Curve Cryptography (ECC), on the
other hand, can provide the same security level as RSA with a smaller key size. The OpenPGP
standard was then extended to support signing and key exchange based on ECC by RFC 6637 [3]
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in 2012. Instead of using the recipient’s RSA public key and private key to encrypt and decrypt
the session key, the sender and recipient use a shared secret established by the Elliptic Curve
Diffie-Hellman (ECDH) method to symmetrically encrypt the session key.

The security of the currently used public-key algorithms, including RSA, ECDH, and ECC-
based digital signatures, is threatened by the rapid advancement of quantum computers recently.
On a sufficiently large quantum computer, Shor’s algorithm [4] allows attackers to break those
public-key algorithms by efficiently computing the private key from the public key. Facing
that threat, in 2017, The National Institute of Standards and Technology (NIST) started the
Post-Quantum Cryptography Standardization Project [5], which aims to standardize a new
class of public-key algorithms that are resistant to quantum computers as measures before
practical quantum computers become operational. A post-quantum extension for the OpenPGP
protocol [6] has been proposed and standardized by an Internet Engineering Task Force (IETF)
working group. In this extension, a traditional ECC-based public-key encryption scheme is
used in combination with CRYSTALS-Kyber [7, 8], a Key Encapsulation Mechanism (KEM),
and an ECC-based digital signature is used in combination with CRYSTALS-Dilithium [9].
CRYSTALS-Kyber and CRYSTALS-Dilithium base their security on the hardness of the learning
with errors problem, which is presumed to be hard even with quantum computers. They are two
of the first group of winners in the standardization project as NIST announced in July 20221.
Let us shortly refer to them as Kyber and Dilithium. The OpenPGP’s post-quantum extension is
referred to as PQ OpenPGP in this paper.

In this paper, we present a formal analysis of PQ OpenPGP. We use Maude [10], a formal
specification language and a high-performance tool to model the protocol as a state machine.
We employ the equipped invariant model checker in Maude (the search command) to check
two properties: (1) secrecy of messages and (2) authenticity of messages. The former guarantees
that messages are securely exchanged, that is, no one other than the sender and the recipient
can learn the message content. The latter states that if Bob successfully decrypts an encrypted
message apparently sent from Alice and verifies the signature, obtaining a raw message 𝑀 , then
Alice indeed sent 𝑀 . To model the presence of an attacker, we rely on the standard Dolev-Yao
model [11]. There exists a generic attacker who can control all connections in the network.
Particularly, the attacker can intercept any message sent in the network to collect information
from such a message, use all cryptographic primitives to manipulate the available information,
and pretend some individual to send a faking message to another individual. Besides, our
specification also allows the attacker to break the security of the ECDH method and the ECC-
based digital signature schemes, that is, the attacker can derive the associated private key from
a given public key.

The Maude specification of the protocol is publicly available on the webpage2. The remainder
of this paper is organized as follows. Some closely related work is mentioned in Section 2. Next,
in Section 3, we briefly introduce some preliminaries, which are necessary for the rest of the
paper. OpenPGP and its post-quantum extension are described in Section 4. Then, Section 5
and Section 6 present how to model the protocol in Maude and the formal analysis. Finally,
Section 7 summarizes our study.

1https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
2https://github.com/duongtd23/pq-openpgp-analysis



2. Related work

There are several case studies on applications of formal methods to security analysis of post-
quantum cryptographic protocols. S. Gazdag et al. [12] have conducted a security analysis
of a post-quantum version of the Internet Key Exchange version 2 (IKEv2). IKEv2 is used to
set up a security association (SA) in the Internet Protocol Security (IPsec) protocol [13], the
most popular technology for setting up Virtual Private Networks (VPNs). They showed that
in a quantum setting, i.e., an attacker has access to quantum computers, the original IKEv2 is
insecure, which is similar to what we showed that Eve can learn the ECDH shared secret. They
analyzed an IKEv2’s post-quantum extension proposed in [14, 15], showing that the improved
protocol enjoys all desired security properties. The formal method tool Tamarin [16] was used
for the verification, where Tamarin is well known as one of the most useful tools for formal
analysis of cryptographic protocols. The Tamarin specification of the protocol is essentially a
state machine in which each state is an AC-collection of facts and transitions between states,
which model the protocol execution, the behavior of honest participants, and capabilities of the
attacker, are specified by Tamarin rules. Tamarin facts and rules are closely similar to observable
components (i.e, name-value pairs) and Maude rewrite rules, respectively. To check a property,
the tool performs an exhaustive, symbolic search based on constraint solving until either a
satisfying trace is found or no more rewrite rules can be applied. Because symbolic search is
executed, Tamarin can give security proof with respect to an unbounded number of sessions
and protocol participants. Meanwhile, with our analysis reported in this paper, the number of
participants must be fixed.

A. Hülsing et al. [17] have proposed a WireGuard’s post-quantum extension and presented a
formal verification of the desired security properties inherited from WireGuard [18], a VPN
protocol focusing on simplicity, fast speed, and high performance. The tool Tamarin [16] was
also used for the formal verification. They modeled the primitives, messages, etc., used in
the protocol as function symbols and terms, which is similar to our approach with Maude. In
addition, the paper also presented a computational security proof, which gave stronger security
guarantees than the symbolic proof with Tamarin since probability and complexity are taken
into account and fewer idealizing assumptions are made. However, more security properties
are verified in the verification with Tamarin, and more importantly, it is computer-verified.

There are some existing case studies on analyzing cryptographic protocols and primitives
also by using Maude [19, 20]. In this paper, to verify the security properties, we use only the
Maude search command (or invariant model checker). Whereas, liveness and fairness properties
were taken into account in the analysis experiments reported in [20]. They employed the LTL
model checker in Maude. On the other hand, they modeled the protocol under analysis at a
higher level than us, that is, some more simplifications are made in their model.

The Amazon Web Services has proposed a quantum-resistant version of the Transport Layer
Security 1.2 protocol [21], called the Hybrid Post-Quantum TLS [22], and its formal analysis has
been studied in [23]. The analysis was conducted by using Maude-NPA [24] and Par-Maude-
NPA [25], a parallel version of Maude-NPA. Maude-NPA is a cryptographic protocol analysis
tool implemented in Maude, based on narrowing & rewriting logic [26]. They used strands [27]
to model the execution of the Hybrid Post-Quantum TLS protocol as well as the capabilities of
a Dolev-Yao attacker. Two properties are verified: (1) secrecy property of the post-quantum



key encapsulation mechanism’s shared secret, and (2) authentication property. To check each
property, a Maude-NPA attack state is defined, representing the insecure state that violates
the property. For the analysis, different from Maude’s forward search, Maude-NPA performs a
backward search from the attack state to check whether it is reachable from an initial state. The
backward reachability analysis is symbolic, and hence, Maude-NPA can provide security proof
with respect to an unbounded number of sessions and participants, which is an advantage over
our analysis approach with Maude. Because of the very large state space generated, similar to
our results reported in this paper, they can only guarantee that the protocol enjoys (1) and (2)
up to depths 12 and 18, respectively, after about 72 days.

3. Preliminaries

This section gives the definition of key encapsulation mechanisms followed by a brief description
of the Maude language.

Key Encapsulation Mechanism

According to the NIST standardization project, key exchange algorithms are formulated as Key
Encapsulation Mechanisms (KEMs). The following is the definition of KEMs.

Definition 1. A key encapsulation mechanism is a tuple of algorithms (KeyGen, Encaps, Decaps)
along with a finite key space 𝒦:

• KeyGen()→ (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm that outputs a public key
𝑝𝑘 and a private key 𝑠𝑘.

• Encaps(𝑝𝑘)→ (𝑐, 𝑘): A probabilistic encapsulation algorithm that takes as input a public
key 𝑝𝑘, and outputs a ciphertext (or encapsulation) 𝑐 and a shared secret 𝑘 ∈ 𝒦.

• Decaps(𝑐, 𝑠𝑘)→ 𝑘: A deterministic decapsulation algorithm that takes as inputs a cipher-
text 𝑐 and a private key 𝑠𝑘, and outputs a shared secret 𝑘 ∈ 𝒦.

Maude

Maude is a declarative language and high-performance tool that focuses on simplicity, ex-
pressiveness, and performance to support the formal specification and analysis of concurrent
programs/systems in rewriting logic. In Maude, the most basic building block is modules. There
are two kinds of modules in Maude: functional modules and system modules. A functional
modules is in the form of fmodℳ is (Σ ,E ) endfm, whereℳ is the module name, Σ is an
order-sorted signature and E is an equation set. Σ may contain declarations of sorts (or types),
subsorts, operators (or function symbols), and variables. A system module is in the form of
modℛ is (Σ ,E ,R) endm, where R is a set of rewrite rules. Using rewrite rules, we can specify
state transitions of a state machine. A rewrite rule starts with the keyword rl, followed by a
label enclosed with square brackets and a colon, two patterns connected with =>, and ends with
a full stop. A conditional one starts with the keyword crl and has a condition following the
keyword if before a full stop. The following is a form of a conditional rewrite rule:



crl [𝑙𝑏] : 𝑙 => 𝑟 if . . . /\ 𝑐𝑖 /\ . . . .

where 𝑙𝑏 is a label and 𝑐𝑖 is part of the condition, which may be an equation 𝑙𝑐𝑖 = 𝑟𝑐𝑖. The
negation of 𝑙𝑐𝑖 = 𝑟𝑐𝑖 could be written as (𝑙𝑐𝑖 =/= 𝑟𝑐𝑖) = true, where = true could be omitted.
If the condition . . . /\ 𝑐𝑖 /\ . . . holds under some substitution 𝜎, 𝜎(𝑙) can be replaced with
𝜎(𝑟).

Maude provides the search command that can find a state reachable from 𝑡 such that the state
matches 𝑝 and satisfies condition(s) 𝑐:

search [n,m] in MOD : 𝑡 =>* 𝑝 such that 𝑐 .

where MOD is the name of the module specifying the state machine, and n and m are optional
arguments stating a bound on the number of desired solutions and the maximum depth of
the search, respectively. n typically is 1 and 𝑡 typically represents an initial state of the state
machine.

4. OpenPGP’s post-quantum extension

We describe the OpenPGP protocol followed by its post-quantum extension.

OpenPGP and ECC in OpenPGP

The process that 𝐴 (the sender) sends a message 𝑀 to 𝐵 (the recipient) is shown in Figure 1,
which consists of the following sequence of steps:

1. The sender hashes the message (using the hash function H), and then signs the digest
with his/her private key (𝑠𝑘𝐴).

2. The sender randomly selects a key value 𝑘, which is served as a session key to encrypt the
message. Note that this session key is used for this message only, i.e., different messages
use different session keys. For the analysis, we suppose that the session key is unique
and non-guessable.

3. The sender asymmetrically encrypts (aenc) the session key with the recipient’s public
key (𝑝𝑘𝐵), obtaining 𝐶1.

4. The sender concatenates the message’s signature and the message, and symmetrically
encrypts (senc) it under the session key 𝑘, obtaining 𝐶2 (|| denotes the concatenation).
The concatenation of 𝐶1 and 𝐶2 are outputted as the result.

The process shown in Figure 1 provides confidentiality and integrity to the message being
sent. Depending on the sender’s desire, it may not be desirable to have both security services.
For instance, when integrity is not desirable, the sender will omit the signing part and proceed
to encrypt the message only. In this study, however, we always consider both confidentiality
and integrity to be desirable.

Figure 2 depicts how the recipient decrypts the received ciphertext and validates it, which
consists of the following step sequence:



𝑀 H sign

𝑠𝑘𝐴

|| senc

𝑘 aenc 𝑝𝑘𝐵

|| 𝐶1 || 𝐶2
𝐶2

𝐶1

𝑆𝑖𝑔𝑛 ||𝑀

Figure 1: OpenPGP: Sending a message𝑀

𝐶1 || 𝐶2 adec
𝑘

𝑠𝑘𝐵

sdec 𝑆𝑖𝑔𝑛 ||𝑀

H

verify

𝑝𝑘𝐴

Figure 2: OpenPGP: Receiving an encrypted message

Sender private key
𝑣

Recipient public key
𝑅

Shared secret
𝑆

Derived key
𝑍 = KDF(𝑆)

Session key
𝑘

Encrypted session key
ECC𝐶 = senc(𝑍, 𝑘)

Output
𝐶1 = 𝑉 || ECC𝐶

Figure 3: Session key encryption with ECDH

1. The recipient decrypts the first part of the ciphertext (𝐶1) with his/her private key (𝑠𝑘𝐵)
to recover the session key 𝑘.

2. The recipient uses the session key to decrypt the second part of the ciphertext (𝐶2),
obtaining a message and a signature.

3. The recipient hashes the message and uses the sender public key (𝑝𝑘𝐴) to validate the
integrity of the message received.

When the ECDH key exchange method is used, instead of using the recipient’s public key
and private key to encrypt and decrypt the session key as shown in Figure 1 and Figure 2, a
so-called derived key is computed from the shared secret and that derived key is used to encrypt



𝑀 H ECC-sign

Dilithium-sign

DIL𝑠𝑘𝐴

||

ECC𝑠𝑘𝐴

𝑆𝑖𝑔𝑛 ||𝑀

Figure 4: Composite ECC-based signature scheme and CRYSTALS-Dilithium

the session key. The precise step sequence to encrypt the session key with ECDH is given in
Figure 3:

1. The sender first generates an ECDH ephemeral private/public key pair {𝑣, 𝑉 }.

2. The ECDH shared secret 𝑆 is computed from 𝑣 and the recipient public key 𝑅.

3. The sender then uses the key derivation function (KDF) to compute the derived key 𝑍
from the shared secret.

4. The session key 𝑘 is encrypted under the derived key.

5. Finally, the sender concatenates his/her ephemeral public key and the encrypted session
key, outputting the result.

Upon receiving the message, the recipient computes the shared secret from his/her ECDH
private key (the associated private key of 𝑅) and the sender public key 𝑉 . The recipient then
derives 𝑍 , uses it to decrypt the session key, and uses the session key to decrypt the message as
well as validate the signature.

OpenPGP’s post-quantum extension

PQ OpenPGP makes use of two pairs of combinations: (1) an ECC-based signature algorithm in
combination with CRYSTALS-Dilithium, and (2) ECDH in combination with CRYSTALS-Kyber.
Figure 4 illustrates the composite ECC-based and Dilithium signature schemes. Given a message
𝑀 , the sender hashes it, and signs the message digest with both ECC-based’s and Dilithium’s
sign functions. Note that ECC𝑠𝑘𝐴 and DIL𝑠𝑘𝐴 denote the ECC-based and Dilithium signing
private key of the sender, respectively. When decrypting the message, the recipient must
validate both signatures.

The Internet-Draft [6] also defines another option in which SPHINCS+ [28] is used as a
standalone public-key signature scheme. That option, however, is omitted in this paper.

Figure 5 depicts the composite algorithm with ECDH and Kyber to encrypt a session key 𝑘,
which consists of the following sequence of steps:



ECDH private key
ECDH𝑣

ECDH public key
ECDH𝑅

Kyber public key
KBR𝑝𝑘

Kyber ciphertext & shared secret
(KBR𝐶 ,KBR𝑆)← Encaps(KBR𝑝𝑘)

ECDH shared secret
ECDH𝑆

Key-Encryption-Key
𝐾𝐸𝐾 = KeyCombine(ECDH𝑆 ,ECDH𝑉 ,KBR𝑆 ,KBR𝐶)

Session key
𝑘

Encrypted session key
𝐾𝐶 = senc(𝐾𝐸𝐾, 𝑘)

Output
𝐶1 = ECDH𝑉 ||KBR𝐶 ||𝐾𝐶

Figure 5: Composite ECDH and CRYSTALS-Kyber

1. The sender first generates an ECDH ephemeral private/public key pair
{ECDH𝑣,ECDH𝑉 }.

2. The ECDH shared secret ECDH𝑆 is computed from the sender’s private key and the
recipient’s public key ECDH𝑅.

3. Taking the Kyber public key of the recipient as input, the sender performs Kyber Encaps

to generate a ciphertext KBR𝐶 and a shared secret KBR𝑆 . Note that because Encaps

is probabilistic, each time it is invoked, different ciphertext and shared secret will be
generated.

4. The sender then uses a so-called function KeyCombine to compute the so-called Key-
Encryption-Key 𝐾𝐸𝐾 from the two shared secrets, the sender’s ECDH public key, and
the Kyber ciphertext.

5. The session key 𝑘 is encrypted under the Key-Encryption-Key.

6. Finally, the sender concatenates his/her ECDH public key, the Kyber ciphertext, and the
encrypted session key, outputting the result.

Upon receiving the message, the recipient computes: (1) the ECDH shared secret from his/her
private key (the associated private key of 𝑅) and the sender public key 𝑉 ; and (2) the Kyber
shared secret by performing Decaps, taking his/her private key (the associated private key of
KBR𝑝𝑘) and the received Kyber ciphertext as inputs. The recipient then derives Key-Encryption-
Key, uses it to decrypt the session key, and uses the session key to decrypt the message as well
as validate the two signatures.

For the analysis, we suppose that the binding between a public key and its owner identifier is
always correctly done. It means that the attacker is unable to claim their public key is a public



key of some honest participant. To achieve this purpose, different methods are used together
in OpenPGP, such as, public-key fingerprints, certificates, and web of trust. Web of trust is a
decentralized trust model, in contrast to the centralized trust model that relies on a certificate
authority, allowing anyone to sign a partner public key to certify that that public key truly
belongs to that person. Everyone can choose their trusted introducers, from which they trust
all certificates signed by such introducers. In fact, however, no completely satisfactory solution
(including the web of trust model) is known to the issue of binding between a public key and its
owner.

5. Modeling the protocol

This section presents how to model PQ OpenPGP in Maude [10], a formal specification language
and a high-performance tool that can be used to analyze a wide range of systems/protocols.

5.1. Modeling ECDH and CRYSTALS-Kyber

ECDH is modeled in the following Maude functional module:

fmod ECDH is

sorts EdPubKey EdPriKey EdShareS .

derivation of the associated public key from a private key

op pk : EdPriKey -> EdPubKey .

computation of the shared secret from a received public key and a private key

op ss : EdPubKey EdPriKey -> EdShareS .

constructor of a shared secret is a private key pair

op | : EdPriKey EdPriKey -> EdShareS [comm] .

vars SK SK2 : EdPriKey . declarations of variables

eq ss(pk(SK), SK2) = SK | SK2 . an equation

endfm

This module first introduces three sorts (or types) EdPubKey, EdPriKey, and EdShareS representing
ECDH public keys, private keys, and shared secrets, respectively. We then declare three
operators (or function symbols), where the comments followed by give their corresponding
explanations for what they stand for. For instance, the first operator takes a private key as input
and returns its associated public key as output. The equational attribute comm attached to the
last operator denotes that it is commutative, namely, (𝑠𝑘1 | 𝑠𝑘2) and (𝑠𝑘2 | 𝑠𝑘1) are identical
with all private keys 𝑠𝑘1 and 𝑠𝑘2. The equation defines the semantic of the last operator.

We model Kyber based on the general definition of KEMs, i.e., Definition 1. Another module
is introduced, which contains the following declarations and definitions:

sorts KbPubKey KbPriKey KbShareS KbCipher .

KeyGen is a probabilistic algorithm,

so keygen takes a private key as input and returns the public key

op keygen : KbPriKey -> KbPubKey .

similarly, Encaps is probabilistic, so an argument of KbPriKey is added

op encapsC : KbPubKey KbPriKey -> KbCipher . Encaps: returns ciphertext

op encapsK : KbPubKey KbPriKey -> KbShareS . Encaps: returns shared secret

op decaps : KbCipher KbPriKey -> KbShareS . Decaps



constructor of a shared secret is a private key pair

op & : KbPriKey KbPriKey -> KbShareS .

vars SK SK2 : KbPriKey .

eq encapsK(keygen(SK), SK2) = (SK & SK2) .

eq decaps(encapsC(keygen(SK), SK2), SK) = (SK & SK2) .

We introduce four sorts KbPubKey, KbPriKey, KbShareS, and KbCipher, representing public keys,
private keys, shared secrets, and ciphertexts (or encapsulations), respectively. As indicated
in Definition 1, KeyGen and Encaps are two probabilistic algorithms. Thus, to specify them as
deterministic procedures in Maude, an argument of the sort KbPriKey is added as the input
argument. With Encaps, we introduce two separate operators encapsC and encapsK, respectively
returning the ciphertext and the shared secret. The first equation defines the semantic of the
operator &. Given a ciphertext and a private key, the second equation states that Decaps properly
outputs the shared secret only if the given ciphertext encapsulates the public key that is the
associated public key of the given private key.

5.2. Modeling cryptographic primitives

We define the generic sort Data as the supersort of all sorts mentioned before, such as EdPubKey

and KbPubKey. || is the concatenation operator, which forms terms of the sort DataL.

sorts Data DataL .

subsorts EdPubKey EdPriKey KbPubKey KbPriKey ... < Data . some other sorts in ...

subsort Data < DataL .

op nilDL : -> DataL [ctor] .

op || : DataL DataL -> DataL [assoc ctor id: nilDL] . concatenation

nilDL is the identity element of ||, thanks to the Maude attribute id:. assoc states that || is
associative. ctor states that nilDL and || are constructors of the sort DataL.

Several operators are introduced to model cryptographic primitives. For instance, the opera-
tors modeling the hash function, the sign and verify functions of ECC-based digital signature
schemes are as follows:

op h : DataL -> Data . hash function

op ecSign : EsPriKey Data -> Data . ECC based signature: sign

sign digest

op ecVerify : EsPubKey Data Data -> Bool . ECC based signature: verify

where EsPriKey and EsPubKey are two sorts of the signing private keys and the verifying public
keys. Given a digest, a verifying public key, and a signature, the following two equations define
that ecVerify returns valid only if the signature is signed with the associated private key of the
given public key (with the attached attribute owise, the second equation will not be applied
unless the first equation cannot be applied):

eq ecVerify(pkes(SKES), ecSign(SKES,D), D) = true .

eq ecVerify(PKES, SIGN, D) = false [owise] .



5.3. Modeling the protocol execution

We suppose that there exists two honest users together with a dishonest user (the intruder)
participating in the protocol. PQ OpenPGP is modeled as a state machine, where each state is
in the form of a braced associative-commutative collection (AC-collection) of name-value pairs,
which are called observable components in Maude.

We use the following observable components:

• (ecdh[𝑎]: < pk(𝑠𝑘𝑒𝑑) ; 𝑠𝑘𝑒𝑑 >): User 𝑎 has an ECDH public/private key pair pk(𝑠𝑘𝑒𝑑) and
𝑠𝑘𝑒𝑑, where < · ; · > is defined as a pair of keys. Recall that the operator pk takes a private
key as input and returns its associated public key as output. In fact, a user may have more
than one ECDH public/private key pair, but for the sake of simplicity, in this analysis, we
restrict each user to only one ECDH public/private key pair.

• (ecsig[𝑎]: < pkes(𝑠𝑘𝑒𝑠) ; 𝑠𝑘𝑒𝑠 >): User 𝑎 has an ECC-based signature scheme’s public/pri-
vate key pair pkes(𝑠𝑘𝑒𝑠) and 𝑠𝑘𝑒𝑠, where pk(𝑠𝑘𝑒𝑠) denotes the associated public key of
𝑠𝑘𝑒𝑠.

• (kyber[𝑎]: < keygen(𝑠𝑘𝑘𝑏) ; 𝑠𝑘𝑘𝑏 >): User 𝑎 has a Kyber public/private key pair
keygen(𝑠𝑘𝑘𝑏) and 𝑠𝑘𝑘𝑏.

• (dilit[𝑎]: < pkdi(𝑠𝑘𝑑𝑖) ; 𝑠𝑘𝑑𝑖 >): User 𝑎 has a Dilithium signature public/private key pair
pkdi(𝑠𝑘𝑑𝑖) and 𝑠𝑘𝑑𝑖, where pkdi(𝑠𝑘𝑑𝑖) is the associated public key of 𝑠𝑘𝑒𝑠.

• (rd-sesskey: 𝑘𝑠): 𝑘𝑠 is a space-separated list of available session keys to be used by any
user. That is, whenever a user needs to randomly generate a session key to encrypt a raw
message, the head value of 𝑘𝑠 will be used. Note that we define 𝑘𝑠 as a list instead of a
set to reduce the number of states generated in the checking experiments later on.

• (e-knl: 𝑑𝑠): The intruder’s knowledge is 𝑑𝑠, which is a set of Data’s terms separated by ;.
𝑑𝑠 includes all information that is available to the intruder, such as those grasped from
messages exchanged between other users, and those synthesized by using cryptographic
primitives.

• (nw: 𝑒𝑚𝑠): The network, i.e., the collection of messages exchanged, is 𝑒𝑚𝑠. Each encrypted
message is in the form of msg(𝑎, 𝑏, 𝑐𝑖𝑝ℎ𝑒𝑟), where 𝑎, 𝑏, and 𝑐𝑖𝑝ℎ𝑒𝑟 respectively are the
sender, the recipient, and the message content.

• (ms: 𝑚𝑠): 𝑚𝑠 is a space-separated list of raw messages to be sent by users.

• (rd-ecdh: 𝑠𝑘𝑒𝑑𝑠): 𝑠𝑘𝑒𝑑𝑠 is a list of available values to be used as ECDH ephemeral private
keys. That is, whenever a user queries a new ECDH ephemeral private key, the head
value of 𝑠𝑘𝑒𝑑𝑠 will be used.

• (rd-kyber: 𝑠𝑘𝑘𝑏𝑠): 𝑠𝑘𝑘𝑏𝑠 is a list of available values to be used as Kyber ephemeral private
keys.

• (used-kyber[𝑎]: 𝑠𝑘𝑘𝑏𝑠): 𝑠𝑘𝑘𝑏𝑠 is a set of Kyber ephemeral private keys that was used by
user 𝑎 and was erased from 𝑎’s memory.



The initial state is defined as follows:

eq init =

{(ecsig[a]: (< pkes(skes1) ; skes1 >))

(dilit[a]: (< pkdi(skdi1) ; skdi1 >))

(ecdh[a] : (< pk(sked1) ; sked1 >)) (ecdh[b] : (< pk(sked2) ; sked2 >))

(kyber[b]: (< keygen(skkb1) ; skkb1 >)) (kyber[a]: (< keygen(skkb2) ; skkb2 >))

(ecsig[eve]: (< pkes(skes3) ; skes3 >)) (dilit[eve]: (< pkdi(skdi3) ; skdi3 >))

(ecdh[eve] : (< pk(sked3) ; sked3 >)) (kyber[eve]: (< keygen(skkb3) ; skkb3 >))

(rd-sesskey: (k1 k2)) (rd-ecdh: sked4) (rd-kyber: skkb4)

(e-knl: (pkes(skes1) ; pkdi(skdi1) ; pk(sked1) ; pk(sked2) ;

keygen(skkb1) ; pkes(skes3) ; skes3 ; pkdi(skdi3) ; skdi3 ;

pk(sked3) ; sked3 ; keygen(skkb3) ; skkb3))

(nw: empty) (ms: (m1 m2))

(used-kyber[b]: empty) (used-kyber[a]: empty)} .

a and b are the two honest users, while eve is the dishonest one. We suppose that b always be
the recipient, while a always be the sender, and so two key pairs of ECC-based and Dilithium
signatures are given to a. Initially, the intruder’s knowledge includes their own keys and all
other participants’ public keys.

Encryption and sending a message is modeled by the following rewrite rule:

crl [send] :

{(ms: (M MS)) (rd-sesskey: (K KS))

(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))

(ecdh[B] : (< PKED ; SKED > , SKS3)) (ecdh[A] : (< PKED2 ; SKED2 > , SKS4))

(kyber[B]: (< PKKB ; SKKB > , SKS5)) (kyber[A] : (< PKKB2 ; SKKB2 > , SKS6))

(nw: NW) (e-knl: DS) (used-kyber[A]: SKS7) OCs}

=> {(ms: MS) (rd-sesskey: KS)

(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))

(ecdh[B] : (< PKED ; SKED > , SKS3)) (ecdh[A] : (SKS4))

(kyber[B]: (< PKKB ; SKKB > , SKS5)) (kyber[A] : (SKS6))

(nw: (msg(A,B, PKED2 || KBC || KC || C2) NW))

(e-knl: (DS ; PKED2 ; KBC ; KC ; C2))

(used-kyber[A]: (SKS7 , < PKKB2 ; SKKB2 >)) OCs}

if H := h(M) /\

SIGN := ecSign(SKES,H) /\ SIGN2 := diSign(SKDI,H) /\

EDSS := ss(PKED,SKED2) /\ KBSS := encapsK(PKKB,SKKB2) /\

KBC := encapsC(PKKB,SKKB2) /\

KEK := kcombine(EDSS,PKED2,KBSS,KBC) /\

KC := senc(KEK, K) /\

C2 := senc(K, SIGN || SIGN2 || M) .

M is the raw message being sent. Sender A first hashes M, obtaining H, and then signs H with his
own ECC-based signature’s and Dilithium’s private keys, obtaining SIGN and SIGN2, respectively.
PKED and PKKB are the ECDH’s and Kyber’s public keys of recipient B, while SKED2 and SKKB2 are
the ECDH’s and Kyber’s ephemeral private keys of A. From these keys, A computes the two
shared secrets EDSS and KBSS as well as the Kyber ciphertext KBC. The key-encryption-key KEK

is then computed by the function kCombine (KeyCombine in Figure 5). A selects session key K,
encrypts it with the key-encryption-key, obtaining KC, and encrypts SIGN || SIGN2 || M with



K, obtaining C2. The encrypted message msg(A,B, PKED2 || KBC || KC || C2) is put into the
network in the successor state, namely, A sent that message to B. At the same time, the intruder
learns the message content (the message content is put into e-knl), A erases his ECDH’s and
Kyber’s ephemeral key pairs just used, and the Kyber’s ephemeral private key is put into A’s set
of Kyber’s ephemeral private keys used.

We suppose that the sender always deletes ECDH’s and Kyber’s ephemeral keys after sending
a message. In contrast, the recipient is not forced to do so. Typically, users are required to
periodically update the ephemeral keys. We defined two other rewrite rules modeling the
process by which users generate new ephemeral key pairs.

5.4. Modeling the intruder

The intruder is given a capability of intercepting any message sent in the network to learn
information carried in that message. This capability has been illustrated through the rewrite
rule [send] previously presented. In addition, the intruder can (1) generate random session
keys and raw messages to be sent, and (2) apply any cryptographic primitive function to derive
new information from the information is available to them. Several rewrite rules are defined to
model (2), some among them are as follows:

hash anything

rl [hash] :

{(e-knl: (M ; DS)) OCs} => {(e-knl: (M ; DS ; h(M))) OCs} .

sign anything, SKES is any ECC based signature scheme’s private key

rl [sign] :

{(e-knl: (SKES ; h(D) ; DS)) OCs}

=> {(e-knl: (SKES ; h(D) ; DS ; ecSign(SKES,h(D)))) OCs} .

compute keys and encapsulation by Encaps

PKKB and SKKB are variables of Kyber public and private keys

crl [encaps] :

{(e-knl: (PKKB ; SKKB ; DS)) OCs}

=> {(e-knl: (PKKB ; SKKB ; DS ; encapsC(PKKB, SKKB) ; encapsK(PKKB, SKKB))) OCs}

if PKKB =/= keygen(SKKB) .

With the rewrite rule [hash], the intruder is restricted to hash only raw messages instead of any
terms of sort Data. Even though this restricts the intruder capabilities to some extent, it helps to
reduce the number of states generated in the analysis later on. Recall that because we define 𝑑𝑠
in (e-knl: 𝑑𝑠) as a set, there is no duplication in 𝑑𝑠. As a result, it cannot be the case that an
infinite number of different states are produced by applying the rule [hash] infinite times with
the same message M.

We assume practical quantum computers are available to the intruder, from which they can
break the security of ECDH and ECC-based signature schemes. If a public key of those two
schemes is given to Eve, Eve can derive its associated private key. This capability is specified by
the following two rewrite rules:

breaking ECDH, Eve can derive private keys from public keys

rl [break-ecdh] :

{(e-knl: (pk(SKED) ; DS)) OCs} => {(e-knl: (pk(SKED) ; DS ; SKED)) OCs} .

breaking ECC based signature schemes



rl [break-ecc-sign] :

{(e-knl: (pkes(SKES) ; DS)) OCs} => {(e-knl: (pkes(SKES) ; DS ; SKES)) OCs} .

6. Formal analysis

We first check that the formal specification allows two users to successfully send an encrypted
message and decrypt it. To this end, we define a Maude search command finding a state
reachable from init such that an encrypted message sent from A to B exists in the network and
B successfully decrypts and validates the message. Executing that search command, Maude
almost immediately found such a state at the first depth, that is, only one rewrite rule (send) is
applied, changing the state from init to the state found.

6.1. Secrecy of messages

All messages should be securely sent, that is, no one other than the sender and the recipient
can learn the message content. This property can be called the secrecy of messages. To check
this property, we define the following search command:

search [1,10] in PQOPENPGP : init =>*
{(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))

(ecdh[B] : (< PKED ; SKED > , SKS3)) (kyber[B]: (< PKKB ; SKKB > , SKS5))

(nw: (msg(A,B, PKED2 || KBC || KC || C2) NW))

(e-knl: (M ; DS)) OCs}

such that

(A =/= eve and B =/= eve) /\

EDSS := ss(PKED2, SKED) /\ KBSS := decaps(KBC, SKKB) /\

KEK := kcombine(EDSS, PKED2, KBSS, KBC) /\

K := sdec(KEK, KC) /\

SIGN || SIGN2 || M := sdec(K, C2) /\

ecVerify(PKES, SIGN, h(M)) /\ diVerify(PKDI, SIGN2, h(M)) .

The command tries to find a state with bounded depth 10 in which there exists an encrypted
message sent from A to B in the network, B successfully decrypts the raw message M and verifies
the composite signatures, and M exists in Eve’s knowledge. The procedure for the recipient B
to decrypt and validate the message is as follows. B first computes (1) the ECDH shared secret
EDSS from the received public key and her own private key; and (2) the Kyber shared secret
KBSS by the function Decaps with the received encapsulation and her own private key. B then
computes the key-encryption-key KEK and uses it to decrypt the session key K. B uses the session
key to decrypt the encrypted message, obtaining a raw message M and two signatures. Finally, B
verifies the two signatures.

Maude did not find such a state after about 1 minute and 39 seconds, meaning that the protocol
enjoys the property up to depth 10. The experiment was conducted on a computing server that
carries 192 GB of memory and a 2.8 GHz microprocessor with 8 cores. The experimental results
are reported in Table 1 and will be discussed in detail below.



Property Depth Result Time (h:m:s) No. States

Secrecy of messages

8 ∅ 0:00:6.7 46317
9 ∅ 0:00:22.2 98943
10 ∅ 0:01:39 206972
11 ∅ 0:08:31 430750
12 ∅ 0:42:34 903344
13 ∅ 5:08:16 1929731

Authenticity of messages

8 ∅ 0:06:40 46317
9 ∅ 0:23:39 98943
10 ∅ 1:26:30 206972
11 ∅ 6:54:14 430750

Table 1
Experimental results. ∅ means that Maude did not find solution(s) for the given search command.

6.2. Learning ECDH shared secrets

We define another command to show that Eve can learn the ECDH shared secret after a message
is exchanged between two users. This search command is identical to the previous command
used to check the secrecy property of messages sent except that the observable component
e-knl is now changed to the following:

(e-knl: (EDSS ; DS))

Recall that EDSS is the ECDH shared secret. Maude found a state after about 6 milliseconds. The
found state is at depth 3 after the three following rewrite rules are applied:

1. rule [send]: a encrypts and sends a message to b.

2. rule [break-ecdh]: eve derives the ECDH ephemeral private key of a from the public key.

3. rule [ss]: eve computes the ECDH shared secret from a’s private key just obtained and
b’s public key.

6.3. Authenticity of messages

This property states that if Bob successfully decrypts an encrypted message apparently sent from
Alice and successfully verifies the composite signatures with Alice’s verifying keys, obtaining
a raw message 𝑀 , then Alice indeed sent 𝑀 to Bob. To check the property, we define the
following search command:

search [1,10] in PQOPENPGP : init =>*
{(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))

(ecdh[B] : (< PKED ; SKED > , SKS3)) (kyber[B]: (< PKKB ; SKKB > , SKS5))

(e-knl: (PKED2 ; KBC ; KC ; C2 ; DS)) (nw: NW)

(used-kyber[A]: (< PKKB2 ; SKKB2 > , SKS6)) OCs}

such that

(A =/= eve and B =/= eve) /\



EDSS := ss(PKED2, SKED) /\ KBSS := decaps(KBC, SKKB) /\

KEK := kcombine(EDSS, PKED2, KBSS, KBC) /\

K := sdec(KEK, KC) /\

SIGN || SIGN2 || M := sdec(K, C2) /\

ecVerify(PKES, SIGN, h(M)) /\ diVerify(PKDI, SIGN2, h(M)) /\

not(msg(A,B, PKED2 || KBC || KC || C2) \in NW) /\

KBC == encapsC(PKKB, SKKB2) .

The command tries to find a state with bounded depth 10 such that:

(1) Eve knows four pieces of data PKED2, KBC, KC, and C2 (Eve can use these pieces of data
forming a message, and pretend A to send the message to B);

(2) from those four pieces of data, B successfully decrypts a raw message M and verifies the
signatures with A’s verifying keys;

(3) A did not send those four pieces of data to B, namely, such a message does not exist in the
network.

If such a state exists, it is possible to happen a case in which B receives a valid message apparently
sent from A, but the message is actually forged by Eve. Maude did not find such a state after about
1 hour and 26 minutes. The search command bounds KBC to be the ciphertext encapsulating an
ephemeral private key of A, meaning that the ciphertext was really created by A. As mentioned
before, we suppose that the binding between a public key (or KEM ciphertext) and its real owner
is always correctly done.

Table 1 shows the experimental results of (1) the secrecy of messages from depth 8 to depth 13
and (2) the authenticity of messages from depth 8 to depth 11. Those results confirm that PQ
OpenPGP enjoys (1) and (2) up to depths 13 and 11, respectively. With the same depth, checking
(1) is significantly faster than checking (2), which is mostly because, in each state, there is a
huge number of substitutions for the following pattern in the search command of (2):

(e-knl: (PKED2 ; KBC ; KC ; C2 ; DS))

KC and C2 are variables of the sort Data, and so they can be substituted by any terms of Data or
its subsorts. Besides, ; is AC, making the number of substitution solutions increase.

7. Concluding remarks

Using the Maude tool, we have presented a formal analysis of the OpenPGP’s post-quantum
extension. The protocol is modeled as a state machine with three participants, one of whom
is an active attacker. The experimental results have confirmed that the protocol enjoys two
properties: secrecy of messages and authenticity of messages up to some specific depths. Even
though we limit the number of protocol participants to three, the number of the state space
generated is really huge (nearly 1 million states at depth 12), which makes us unable to proceed
with the experiments at deeper depths due to time limitations. State explosion, however, is not
dedicated to Maude only, but rather the burdensome issue of all analysis/verification approaches
based on model checking.



Interactive theorem proving, the complementary approach to model checking, is one possible
way to escape from the state explosion issue. Protocol analysis/verification based on interactive
theorem proving makes it feasible to deal with an infinite state space. In particular, with crypto-
graphic protocols, we can do formal verification with an unbounded number of participants and
session executions. However, this comes at a cost: human creativity is required. Verification by
using the tool IPSG [29] to produce the so-called proof scores [30] is a promising way that we
plan to apply the method to the OpenPGP’s post-quantum extension.
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