
Automated Quantum Program Verification in
Probabilistic Dynamic Quantum Logic
Canh Minh Do1,*, Tsubasa Takagi2 and Kazuhiro Ogata1

1Japan Advanced Institute of Science and Technology, 1-8 Asahidai, Nomi, Japan
2Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, Japan

Abstract
We proposed an automated approach to verifying quantum programs based on Basic Dynamic Quantum
Logic (BDQL), a simplified version of Dynamic Quantum Logic, and developed a support tool in Maude, a
specification/programming language based on rewriting logic, to automate the verification process. This
paper extends BDQL to Probabilistic Dynamic Quantum Logic (PDQL) to verify probabilistic quantum
programs by introducing a probabilistic operator in the formulas of PDQL. We also extend the support tool
for BDQL to make a new support tool for PDQL to automatically verify both qualitative and quantitative
properties for quantum programs with PDQL. As case studies, we use our support tool to verify several
quantum programs: Superdense Coding, Quantum Teleportation, Quantum Secret Sharing, Entanglement
Swapping, Quantum Gate Teleportation, Quantum Relay Scheme, Bidirectional Quantum Teleportation,
Two-qubit Quantum Teleportation, and Quantum Network Coding, where the probability is intentionally
expressed in the formalizations of quantum programs, demonstrating the expressiveness of PDQL.
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1. Introduction

Quantum computing holds the potential to revolutionize various fields by harnessing the
principles of quantum mechanics to perform computations that are currently infeasible for
classical computers. For example, in the field of cryptography, the arrival of future quantum
computers has the potential to break widely used public-key cryptography methods, such as
Rivest–Shamir–Adleman (RSA) and Elliptic-curve Cryptography (ECC), by effectively factor-
ing large numbers or solving the discrete logarithm problem using Shor’s fast algorithm [1].
Quantum computing uses different principles of quantum mechanics, such as superposition,
entanglement, and measurement, which are completely different from classical computing. As
a result, it is challenging to accurately design and implement quantum algorithms, programs,
and protocols. Therefore, it is crucial to ensure the correctness of quantum systems through
verification.
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Dynamic Logic [2] has been playing a significant role in the formal verification of classi-
cal systems for some decades. To handle quantum effects, Dynamic Quantum Logic [3], the
quantum counterpart of Dynamic Logic, has been developed. However, we lack an automated
approach to verifying quantum programs using Dynamic Quantum Logic. Our research group
devised an automated approach to verifying quantum programs using Basic Dynamic Quantum
Logic (BDQL) [4], a simplified version of Dynamic Quantum Logic, and developed a support
tool in Maude [5], a specification/programming language based on rewriting logic [5], to auto-
mate the verification process by incorporating symbolic reasoning for quantum computation
in [6]. This paper extends BDQL to Probabilistic Dynamic Quantum Logic (PDQL) to verify
probabilistic quantum programs by introducing a probabilistic operator in the formulas of
PDQL. We also extend the support tool for BDQL to make a new support tool for PDQL to
automatically verify both qualitative and quantitative properties for quantum programs with
PDQL. As case studies, we use our support tool to verify several quantum programs: Super-
dense Coding [7], Quantum Teleportation [8], Quantum Secret Sharing [9], Entanglement
Swapping [10], Quantum Relay Scheme [11], Bidirectional Quantum Teleportation [12], Quan-
tum Gate Teleportation [13], Two-qubit Quantum Teleportation [14], and Quantum Network
Coding [15], where the probability is intentionally expressed in the formalizations of quantum
programs, demonstrates the expressiveness of PDQL. The support tool and case studies are
publicly available at https://github.com/canhminhdo/DQL.

The rest of the paper is organized as follows: Section 2 describes Basic Dynamic Quantum
Logic (BDQL); Section 3 presents Probabilistic Dynamic Quantum Logic (PDQL); Section 5
demonstrates the application of PDQL for probabilistic quantum program verification; Section 5
describes the implementation of PDQL; Section 6 exhibits the experimental results with our
support tool for several quantum programs; Section 7 presents some existing work; and Section 8
concludes the paper with some pieces of future work.

2. Basic Dynamic Quantum Logic

This section formulates Basic Dynamic Quantum Logic (BDQL) [4]. Let 𝐿0 be a set of atomic
formulas and Π0 be a set of atomic programs. The set 𝐿 of all formulas in BDQL and the set Π
of all star-free regular programs are generated by simultaneous induction as follows:

𝐿 ∋ 𝐴 :: = 𝑝 | ¬𝐴 | 𝐴 ∧𝐴 | [𝑎]𝐴,
Π ∋ 𝑎 :: = skip | abort | 𝜋 | 𝑎 ; 𝑎 | 𝑎 ∪ 𝑎 | 𝐴?,

where 𝑝 ∈ 𝐿0 and 𝜋 ∈ Π0. The symbols skip and abort are called constant programs. The
operators ;, ∪, and ? are called sequential composition, non-deterministic choice, and test,
respectively.

The syntax of BDQL is exactly the same as that of Propositional Dynamic Logic (PDL) [2]
without the Kleene star operator *. It is not strange that two different logics have the same
syntax. For example, Classical Logic and Intuitionistic Logic have the same syntax but are
distinguished by their semantics (or their sets of provable formulas). Similarly, the semantics
of BDQL and that of the star-free fragment of PDL are different. This paper considers only
star-free regular programs, leaving the addition of * to the logic in a future paper.



We define the semantics of BDQL using frames and models as usual. This kind of semantics
is called Kripke (or relational) semantics.

• A quantum dynamic frame is a pair 𝐹 = (ℋ, 𝑣) that consists of a Hilbert space ℋ and
a function 𝑣 from Π0 to the set 𝒰(ℋ) of all unitary operators on ℋ. The function 𝑣 is
called an interpretation for atomic programs.

• A quantum dynamic model is a triple 𝑀 = (ℋ, 𝑣, 𝑉 ) that consists of a quantum dynamic
frame (ℋ, 𝑣) and a function 𝑉 from 𝐿0 to the set 𝒞(ℋ) of all closed subspaces of ℋ. The
function 𝑉 is called an interpretation for atomic formulas.

The definition of quantum dynamic models states that atomic formulas are interpreted as
a closed subspace of a Hilbert space. This interpretation is known as the algebraic semantics
for Quantum Logic [16]. The set 𝒞(ℋ) is called a Hilbert lattice [17] because it forms a lattice
with meet 𝑋 ∩ 𝑌 and join 𝑋 ⊔ 𝑌 = (𝑋⊥ ∩ 𝑌 ⊥)⊥ for any 𝑋,𝑌 ∈ 𝒞(ℋ), where ⊥ denotes the
orthogonal complement. Note that 𝑋 ⊔ 𝑌 ⊇ 𝑋 ∪ 𝑌 and 𝑋 ∪ 𝑌 /∈ 𝒞(ℋ) in general.

Remark 2.1. Usually, Kripke frames are defined as a pair (tuple) that consists of a non-empty
set 𝑆 and relation(s) 𝑅 on 𝑆. On the other hand, the quantum dynamic frames defined above
have no relation(s). However, the relations can be recovered immediately using 𝑣. That is, the
family {𝑅𝜋 : 𝜋 ∈ Π0} of relations on ℋ is constructed by

𝑅𝜋 = {(𝑠, 𝑡) : (𝑣(𝜋))(𝑠) = 𝑡}

for each 𝜋 ∈ Π0. For this reason, we use the word “frame” for quantum dynamic frames.

The interpretation 𝑣 is defined for atomic programs, and 𝑉 is defined for atomic formu-
las. These interpretations are extended to that for star-free regular programs and formulas,
respectively. For any quantum dynamic model 𝑀 , the function [[ ]]𝑀 : 𝐿→ 𝒞(ℋ) and family
{𝑅𝑀

𝑎 : 𝑎 ∈ Π} of relations on ℋ are defined by simultaneous induction as follows:

1. [[𝑝]]𝑀 = 𝑉 (𝑝);
2. [[¬𝐴]]𝑀 is the orthogonal complement of [[𝐴]]𝑀 ;
3. [[𝐴 ∧𝐵]]𝑀 = [[𝐴]]𝑀 ∩ [[𝐵]]𝑀 ;
4. [[[𝑎]𝐴]]𝑀 = {𝑠 ∈ ℋ : (𝑠, 𝑡) ∈ 𝑅𝑀

𝑎 implies 𝑡 ∈ [[𝐴]]𝑀 for any 𝑡 ∈ ℋ};
5. 𝑅𝑀

skip = {(𝑠, 𝑡) : 𝑠 = 𝑡};

6. 𝑅𝑀
abort = ∅;

7. 𝑅𝑀
𝜋 = {(𝑠, 𝑡) : (𝑣(𝜋))(𝑠) = 𝑡};

8. 𝑅𝑀
𝑎;𝑏 = {(𝑠, 𝑡) : (𝑠, 𝑢) ∈ 𝑅𝑀

𝑎 and (𝑢, 𝑡) ∈ 𝑅𝑀
𝑏 for some 𝑢 ∈ ℋ};

9. 𝑅𝑀
𝑎∪𝑏 = 𝑅𝑀

𝑎 ∪𝑅𝑀
𝑏 ;

10. 𝑅𝑀
𝐴? = {(𝑠, 𝑡) : 𝑃[[𝐴]]𝑀 (𝑠) = 𝑡}, where 𝑃[[𝐴]]𝑀 stands for the projection onto [[𝐴]]𝑀 .

Theorem 2.1. [[ ]]𝑀 is well-defined. That is, [[𝐴]]𝑀 ∈ 𝒞(ℋ) for each 𝐴 ∈ 𝐿.

Proof. See our proof in [4].



The function [[ ]]𝑀 and family {𝑅𝑀
𝑎 : 𝑎 ∈ Π} are uniquely determined if 𝑀 is given. Recall

that 𝑣(𝜋) is a function. On the other hand, 𝑅𝑀
𝑎 is a relation and may not be a function due to ∪.

Now we can understand the meaning of each program: skip does nothing, abort forces
to halt without executing subsequent programs, ; is the composition operator, ∪ is the non-
deterministic choice operator, and ? is the quantum test operator and is used to represent a
result of projective measurement (see Section 4.1).

Henceforth, we write (𝑀, 𝑠) |= 𝐴 for the condition 𝑠 ∈ [[𝐴]]𝑀 as usual. That is, (𝑀, 𝑠) |= 𝐴
if and only if 𝑃[[𝐴]]𝑀 (𝑠) = 𝑠. A formula 𝐴 is said to be satisfiable (resp. valid) if (𝑀, 𝑠) |= 𝐴 for
some (resp. any) 𝑀 and 𝑠 ∈ ℋ.

Remark 2.2. In most modal logics, a contradiction 𝐴 ∧ ¬𝐴 is not satisfiable. In other words,
not (𝑀, 𝑠) |= 𝐴 ∧ ¬𝐴 for any 𝑠. On the other hand, 𝐴 ∧ ¬𝐴 is satisfiable in BDQL because
(𝑀,0) |= 𝐴 ∧ ¬𝐴, where 0 stands for the origin (zero vector) of ℋ. LQP [18] chooses different
semantics from that in this paper to avoid this. That is, 0 (or the corresponding subspace {0})
is not a state in the semantics of LQP. Unlike LQP, we allow 0 to be a state; otherwise, our
definition is ill-defined (Theorem 2.1 does not hold).

The following theorem gives the theoretical background for rewriting the statement of the
form (𝑀, 𝑠) |= 𝐴 in our implementation explained in Section 4 of our previous work [4].

Theorem 2.2. The following holds for any 𝑀 and 𝑠 ∈ ℋ.

1. (𝑀, 𝑠) |= 𝐴 ∧𝐵, if and only if (𝑀, 𝑠) |= 𝐴 and (𝑀, 𝑠) |= 𝐵.
2. (𝑀, 𝑠) |= [skip]𝐴 if and only if (𝑀, 𝑠) |= 𝐴.
3. (𝑀, 𝑠) |= [abort]𝐴.
4. (𝑀, 𝑠) |= [𝜋]𝐴 if and only if (𝑀, (𝑣(𝜋))(𝑠)) |= 𝐴.
5. (𝑀, 𝑠) |= [𝑎 ; 𝑏]𝐴 if and only if (𝑀, 𝑠) |= [𝑎][𝑏]𝐴.
6. (𝑀, 𝑠) |= [𝑎 ∪ 𝑏]𝐴 if and only if (𝑀, 𝑠) |= [𝑎]𝐴 ∧ [𝑏]𝐴.
7. (𝑀, 𝑠) |= [𝐴?]𝐵 if and only if (𝑀,𝑃[[𝐴]]𝑀 (𝑠)) |= 𝐵.

Proof. Straightforward.

3. Probabilistic Dynamic Quantum Logic

In general, the outcome of a projective measurement is not determined in advance because
there is a probability associated with each outcome. To capture this probabilistic ingredient,
we employ a probabilistic operator P≥𝑟 from [3] to formulate Probabilistic Dynamic Quantum
Logic (PDQL) as follows:

𝐿 ∋ 𝐴 :: = 𝑝 | ¬𝐴 | 𝐴 ∧𝐴 | [𝑎]𝐴 | P≥𝑟𝐴,

Π ∋ 𝑎 :: = skip | abort | 𝜋 | 𝑎 ; 𝑎 | 𝑎 ∪ 𝑎 | 𝐴?,

where 𝑟 denotes a rational number in the closed interval [0, 1]. The expression P≥𝑟𝐴 means
that a projective measurement of 𝐴 on the current state of a quantum system will succeed with
probability ≥ 𝑟.



We can also use the probabilistic formula inside the dynamic modality for quantum tests as
follows:

[𝐴?≥𝑟]𝐵 ≜ P≥𝑟𝐴 ∧ [𝐴?]𝐵,

This means that if the quantum test 𝐴? (or the projective measurement of 𝐴) succeeds with
probability ≥ 𝑟, then 𝐵 will be the case after the successful execution of the quantum test.

Similarly, we can define other probabilistic operators P>𝑟, P≤𝑟, P<𝑟, P=𝑟, and P ̸=𝑟. Re-
garding the binary projective measurement of 𝐴, we have the following axioms:

P≥𝑟𝐴→ P≤𝑟¬𝐴, P>𝑟𝐴→ P<𝑟¬𝐴, P≤𝑟𝐴→ P≥(1−𝑟)¬𝐴,
P<𝑟𝐴→ P>𝑟¬𝐴, P=𝑟𝐴→ P=(1−𝑟)𝐴, P ̸=𝑟𝐴→ P ̸=(1−𝑟).

Notice that these axioms only hold for the binary projective measurement of 𝐴.
The function [[ ]]𝑀 : 𝐿→ 𝒞(ℋ) is extended to handle the probabilistic operator P≥𝑟 using

the Born rule as follows:

𝑠 ∈ [[P≥𝑟𝐴]]𝑀 if and only if
⟨
𝑠
⃒⃒⃒
𝑃[[𝐴]]𝑀 (𝑠)

⟩
≥ 𝑟,

where 𝑃[[𝐴]]𝑀 (𝑠) is the projection of the current state 𝑠 on the closed linear subspace spanned by
[[𝐴]]𝑀 , and ⟨𝑠|𝑠′⟩ is the inner product of two vectors representing two states 𝑠 and 𝑠′, respectively.
Therefore, we write (𝑀, 𝑠) |= P≥𝑟𝐴 if and only if 𝑠 ∈ [[P≥𝑟𝐴]]𝑀 as usual.

The following theorem gives the theoretical background for rewriting the statement involving
the probabilistic operator for quantum tests.

Theorem 3.1. The following holds for any 𝑀 , 𝑠 ∈ ℋ, and 𝑟 ∈ [0, 1].

1. (𝑀, 𝑠) |= [𝐴?≥𝑟]𝐵, if and only if (𝑀, 𝑠) |= P≥𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.
2. (𝑀, 𝑠) |= [𝐴?>𝑟]𝐵, if and only if (𝑀, 𝑠) |= P>𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.
3. (𝑀, 𝑠) |= [𝐴?≤𝑟]𝐵, if and only if (𝑀, 𝑠) |= P≤𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.
4. (𝑀, 𝑠) |= [𝐴?<𝑟]𝐵, if and only if (𝑀, 𝑠) |= P<𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.
5. (𝑀, 𝑠) |= [𝐴?=𝑟]𝐵, if and only if (𝑀, 𝑠) |= P=𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.
6. (𝑀, 𝑠) |= [𝐴? ̸=𝑟]𝐵, if and only if (𝑀, 𝑠) |= P ̸=𝑟𝐴 and (𝑀, 𝑠) |= [𝐴?]𝐵.

Proof. Straightforward.

4. Application to Probabilistic Quantum Program Verification

This section describes the behavior and desired properties of some specific quantum programs
in the language of PDQL. These properties can be verified automatically using our support tool
as shown in Sections 5 and 6.



4.1. Basic Notions

In the beginning, we briefly review quantum computation and fix our notation. We assume the
readers have basic knowledge of linear algebra.

Generally speaking, quantum systems are formulated as complex Hilbert spaces. However, for
quantum computation, it is enough to consider specific Hilbert spaces called qubit systems. An
𝑛-qubit system is the complex 2𝑛-space C2𝑛 , where C stands for the complex plane. Pure states
in the 𝑛-qubit system C2𝑛 are unit vectors in C2𝑛 . The orthogonal basis called computational
basis in the one-qubit system C2 is a set {|0⟩ , |1⟩} that consists of the column vectors |0⟩ =
(1, 0)𝑇 and |1⟩ = (0, 1)𝑇 , where 𝑇 denotes the transpose operator. The linear combinations
|+⟩ = (|0⟩ + |1⟩)/

√
2 and |−⟩ = (|0⟩ − |1⟩)/

√
2 of |0⟩ and |1⟩ are also pure states. In

general, |𝜓⟩ = 𝑐0 |0⟩+ 𝑐1 |1⟩ represents a pure state in the one-qubit system C2 provided that
|𝑐0|2 + |𝑐1|2 = 1. This notation of vectors is called bra-ket notation (also called Dirac notation).
|𝜓⟩ is called a ket vector. The bra vector ⟨𝜓| is defined as a row vector whose elements are
complex conjugates of the elements of the corresponding ket vector |𝜓⟩. In the two-qubit system
C4, there are pure states that cannot be represented in the form |𝜓1⟩ ⊗ |𝜓2⟩ and are called
entangled states, where ⊗ denotes the tensor product (more precisely, the Kronecker product).
For example, the EPR state (Einstein-Podolsky-Rosen state) |EPR⟩ = (|00⟩+ |11⟩)/

√
2 is an

entangled state, where |00⟩ = |0⟩ ⊗ |0⟩ and |11⟩ = |1⟩ ⊗ |1⟩.
Quantum computation is represented by unitary operators (also called quantum gates). There

are various quantum gates. For example, the Hadamard gate 𝐻 and Pauli gates 𝑋 , 𝑌 , and 𝑍
are typical quantum gates on the one-qubit system C2 and are defined as follows:

𝐻 =
1√
2

(︃
1 1

1 −1

)︃
, 𝑋 =

(︃
0 1

1 0

)︃
, 𝑌 =

(︃
0 −𝑖
𝑖 0

)︃
, 𝑍 =

(︃
1 0

0 −1

)︃
.

Two typical quantum gates on the two-qubit system C4 are the controlled-X gate (also called
the controlled NOT gate) CX and the swap gate SWAP are defined by

CX = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗𝑋,

SWAP = CX(𝐼 ⊗ |0⟩⟨0|+𝑋 ⊗ |1⟩⟨1|)CX,

where 𝐼 denotes the identity matrix of size 2×2. Measurement is a completely different process
from applying quantum gates. Here we roughly explain specific projective measurements.
For the general definition of projective measurement, see [19]. Observe that 𝑃0 = |0⟩⟨0| and
𝑃1 = |1⟩⟨1| are projections, respectively. After executing the measurement {𝑃0, 𝑃1}, a current
state |𝜓⟩ = 𝑐0 |0⟩+ 𝑐1 |1⟩ is transitioned into 𝑃0 |𝜓⟩ /|𝑐0| = 𝑐0 |0⟩ /|𝑐0| with probability |𝑐0|2
and into 𝑃1 |𝜓⟩ /|𝑐1| = 𝑐1 |1⟩ /|𝑐1| with probability |𝑐1|2.

4.2. Standard Interpretation

To describe the quantum programs discussed in this paper, we fix

Π0 = {H(𝑖), X(𝑖), Y(𝑖), Z(𝑖), CX(𝑖, 𝑗), SWAP(𝑖, 𝑗) : 𝑖, 𝑗 ∈ N, 𝑖 ̸= 𝑗},
𝐿0 = {𝑝(𝑖, |𝜓⟩), 𝑝(𝑖, 𝑖+ 1, |Ψ⟩) : 𝑖 ∈ N, |𝜓⟩ ∈ C2, |Ψ⟩ ∈ C4},



where N stands for the set of all natural numbers (including 0). Because now atomic programs
and atomic formulas are restricted, we only need to consider specific interpretations called the
standard interpretations 𝑣 and 𝑉 instead of 𝑣 and 𝑉 , respectively. The standard interpretations
are defined below.

A function 𝑣 : Π0 → 𝒰(C2𝑛) is called the standard interpretation on C2𝑛 for atomic programs
if

𝑣(H(𝑖)) = 𝐼⊗𝑖 ⊗𝐻 ⊗ 𝐼⊗𝑛−𝑖−1, 𝑣(X(𝑖)) = 𝐼⊗𝑖 ⊗𝑋 ⊗ 𝐼⊗𝑛−𝑖−1,

𝑣(Y(𝑖)) = 𝐼⊗𝑖 ⊗ 𝑌 ⊗ 𝐼⊗𝑛−𝑖−1, 𝑣(Z(𝑖)) = 𝐼⊗𝑖 ⊗ 𝑍 ⊗ 𝐼⊗𝑛−𝑖−1,

𝑣(CX(𝑖, 𝑗)) = 𝐼⊗𝑖 ⊗ |0⟩⟨0| ⊗ 𝐼⊗𝑛−𝑖−1 + (𝐼⊗𝑖 ⊗ |1⟩⟨1| ⊗ 𝐼⊗𝑛−𝑖−1)(𝐼⊗𝑗 ⊗𝑋 ⊗ 𝐼⊗𝑛−𝑗−1),

𝑣(SWAP(𝑖, 𝑗)) = 𝑣(CX(𝑖, 𝑗) ; CX(𝑗, 𝑖) ; CX(𝑖, 𝑗)),

where

𝐼⊗𝑖 =

𝑖⏞  ⏟  
𝐼 ⊗ · · · ⊗ 𝐼 .

That is, under the standard interpretation, H(𝑖), X(𝑖), Y(𝑖), Z(𝑖) execute the corresponding
quantum gate on the 𝑖-th qubit, CX(𝑖, 𝑗) executes the Pauli gate 𝑋 on the target qubit (𝑗-th
qubit) depending on the state of the control qubit (𝑖-th qubit), and SWAP(𝑖, 𝑗) swaps the 𝑖-th
and 𝑗-th qubits.

A functionato is called the standard interpretation on C2𝑛 for atomic formulas if

𝑉 (𝑝(𝑖, |𝜓⟩)) = C2𝑖 ⊗ span{|𝜓⟩} ⊗ C2𝑛−𝑖−1
,

𝑉 (𝑝(𝑖, 𝑖+ 1, |Ψ⟩)) = C2𝑖 ⊗ span{|Ψ⟩} ⊗ C2𝑛−𝑖−2
,

where span{|𝜓⟩} (resp. span{|Ψ⟩}) stands for the subspace spanned by {|𝜓⟩} (resp. {|Ψ⟩}).
In what follows, we write 𝑀𝑛 for (C2𝑛 , 𝑣, 𝑉 ), where the index 𝑛 represents the number

of qubits. In addition, we use the following abbreviation to conventionally describe quantum
programs for quantum tests with probability in PDQL:

if P≥𝑟𝐴 then 𝑎 else 𝑏 fi = (𝐴?≥𝑟 ; 𝑎) ∪ (¬𝐴?≤(1−𝑟) ; 𝑏).

This program means the selection depends on the outcomes of projective measurement with
respect to the probabilities. That is, execute 𝑎 or 𝑏 depending on the result of the measurement
{𝑃[[𝐴]]𝑀 , 𝑃[[¬𝐴]]𝑀 } with respect to P≥𝑟𝐴 and P≤(1−𝑟)¬𝐴.

4.3. Case Studies

In the sequel, we use PDQL to verify some case studies involving probability, which intentionally
is added to the formalizations of quantum programs to demonstrate the expressiveness of
PDQL. For the sake of brevity, this section only describes some quantum programs, including
Quantum Relay Scheme [11], Bidirectional Quantum Teleportation [12], Two-qubit Quantum
Teleportation [14], and Quantum Network Coding [15]. Meanwhile, other quantum programs,
including Superdense Coding [7], Quantum Teleportation [8], Quantum Secret Sharing [9],
Entanglement Swapping [10], and Quantum Gate Teleportation [13], can be derived in a similar
way. The reader interested in them is referred to our previous work [4] for their description
without probability.



Alice: |𝜓⟩ 𝐻

Alice: |0⟩ 𝐻

Charlie: |0⟩ 𝑋 𝑍 𝐻

Charlie: |0⟩ 𝐻

Bob: |0⟩ 𝑋 𝑍 |𝜓⟩

Figure 1: Quantum Relay Scheme

Quantum Relay Scheme

Quantum Relay Scheme [11] allows us to teleport a quantum state from one quantum device
to another wirelessly even though these two devices do not share EPR pairs mutually, which
differs from Quantum Teleportation [8]. The quantum circuit of Quantum Relay Scheme is
depicted in Figure 1. The program of Quantum Relay Scheme with probability intentionally
added is described as follows:

relay = H(1) ; CX(1, 2) ; H(3) ; CX(3, 4) ; CX(0, 1) ; H(0)

; if 𝑝(1, |0⟩)≥1/2 then skip else X(2) fi

; if 𝑝(0, |0⟩)≥1/2 then skip else Z(2) fi

; CX(2, 3) ; H(2)

; if 𝑝(3, |0⟩)≥1/2 then skip else X(4) fi

; if 𝑝(2, |0⟩)≥1/2 then skip else Z(4) fi.

The desired property of Quantum Relay Scheme is that “a pure state |𝜓⟩ is correctly teleported.”
In PDQL, this property is expressed as follows:

(𝑀5, |𝜓⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩) |= [relay]𝑝(4, |𝜓⟩).

Bidirectional Quantum Teleportation

Bidirectional Quantum Teleportation [12] is based on EPR pairs and entanglement swapping
to allow two users to simultaneously transmit an unknown single qubit to each other. The
quantum circuit of Bidirectional Quantum Teleportation is depicted in Figure 2. The program
of Bidirectional Quantum Teleportation with probability intentionally added is described as
follows:

biTeleport = H(2) ; CX(2, 3) ; H(4) ; CX(4, 5) ; CX(0, 2) ; CX(1, 5) ; H(0) ; H(1)

; if 𝑝(2, |0⟩)≥1/2 then skip else X(3) fi

; if 𝑝(0, |0⟩)≥1/2 then skip else Z(3) fi

; if 𝑝(5, |0⟩)≥1/2 then skip else X(4) fi



Alice: |𝜓⟩ 𝐻

Bob: |𝜓′⟩ 𝐻

Alice: |0⟩ 𝐻

Bob: |0⟩ 𝑋 𝑍 |𝜓⟩

Alice: |0⟩ 𝐻 𝑋 𝑍 |𝜓′⟩

Bob: |0⟩

Figure 2: Bidirectional Quantum Teleportation

Alice: |Ψ⟩
𝐻

𝐻

Alice: |0⟩ 𝐻

Alice: |0⟩ 𝐻

Bob: |0⟩ 𝑋 𝑍
|Ψ⟩

Bob: |0⟩ 𝑋 𝑍

Figure 3: Two-qubit Quantum Teleportation

; if 𝑝(1, |0⟩)≥1/2 then skip else Z(4) fi.

The desired property of Bidirectional Quantum Teleportation is that “two pure states |𝜓⟩
and |𝜓′⟩ owned by two users are correctly teleported to each other.” In PDQL, this property is
expressed as follows:

(𝑀6, |𝜓⟩ ⊗
⃒⃒
𝜓′⟩︀⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩) |= [biTeleport]𝑝(3, |𝜓⟩) ∧ 𝑝(4,

⃒⃒
𝜓′⟩︀).

Two-qubit Quantum Teleportation

Two-qubit Quantum Teleportation [14] allows us to teleport an arbitrary two-qubit pure states
|Ψ⟩ = 𝑐00 |00⟩+𝑐01 |01⟩+𝑐10 |10⟩+𝑐11 |11⟩ from one source to another, where |𝑐00|2+ |𝑐01|2+
|𝑐10|2 + |𝑐11|2 = 1. The quantum circuit of Two-qubit Quantum Teleportation is depicted in
Figure 3. The program of Two-qubit Quantum Teleportation with probability intentionally
added is described as follows:

twoTeleport = H(2) ; H(3) ; CX(2, 4) ; CX(3, 5) ; CX(0, 2) ; CX(1, 3) ; H(0) ; H(1)

; if 𝑝(3, |0⟩)≥1/2 then skip else X(5) fi

; if 𝑝(2, |0⟩)≥1/2 then skip else X(4) fi

; if 𝑝(1, |0⟩)≥1/2 then skip else Z(5) fi



; if 𝑝(0, |0⟩)≥1/2 then skip else Z(4) fi.

The desired property of Two-qubit Quantum Teleportation is that “arbitrary two-qubit pure
states |Ψ⟩ is correctly teleported.” In PDQL, this property is expressed as follows:

(𝑀6, |Ψ⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩) |= [twoTeleport]𝑝(4, 5, |Ψ⟩).

Quantum Network Coding

Quantum Network Coding [15] enables the simultaneous generation of EPR pairs by using only
local operations and classical communication (LOCC) and the sharing of EPR pairs between
adjacent quantum repeaters. Simultaneous quantum communication can be achieved by using
Teleportation with these EPR states. This facilitates the transmission of quantum information
on complex networks at higher rates than straightforward routing strategies, such as the simple
entanglement swapping strategy. For the sake of simplicity, we do not depict the quantum
circuit of Quantum Network Coding here, while the reader is referred to their original paper [15].
The protocol introduces two new techniques called “Connection” and “Removal” to manipulate
entangled states and systematize the methods of encoding, which are described as follows:

con(𝑁1, (𝑁2 → 𝑁3)) = CX(𝑁1, 𝑁2)

; if 𝑝(𝑁2, |0⟩)≥1/2 then skip else X(𝑁3) fi.

fanout(𝑁1, (𝑁2 → 𝑁3), (𝑁4 → 𝑁5)) = con(𝑁1, (𝑁2 → 𝑁3)) ; con(𝑁1, (𝑁4 → 𝑁5)).

add(𝑁1, 𝑁2, (𝑁3 → 𝑁4)) = CX(𝑁1, 𝑁3) ; CX(𝑁2, 𝑁3)

; if 𝑝(𝑁3, |0⟩)≥1/2 then skip else X(𝑁4) fi.

rem(𝑁1 → 𝑁2) = H(𝑁1)

; if 𝑝(𝑁1, |0⟩)≥1/2 then skip else Z(𝑁2) fi.

remadd(𝑁3 → (𝑁1, 𝑁2)) = H(𝑁3)

; if 𝑝(𝑁3, |0⟩)≥1/2 then skip

else Z(𝑁1) ; Z(𝑁2) fi .

where 𝑁1, 𝑁2, 𝑁3, and 𝑁4 are natural numbers in the range [0, 9]. Then, the program of
Quantum Network Coding with probability intentionally added is described via con, fanout,
add, rem, and remadd as follows:

networkcoding = H(0) ; CX(0, 1) ; H(2) ; CX(2, 3)

; H(4) ; CX(4, 5) ; H(6) ; CX(6, 7)

; H(8) ; CX(8, 9) ; H(10) ; CX(10, 11)

; H(12) ; CX(12, 13)

; con(0, (2 → 3) ; con(4, (6 → 7)) ; add(3, 7, (8 → 9))

; fanout(9, (10 → 11), (12 → 13)) ; CX(13, 5) ; CX(11, 1)

; rem(11 → 9) ; rem(13 → 9) ; remadd(9 → (3, 7))



; rem(3 → 0) ; rem(7 → 4)

; SWAP(2, 4) ; SWAP(0, 4).

The desired property of Quantum Network Coding is that “the two EPR states (in this case
|EPR⟩) are simultaneously generated.” In PDQL, this property is expressed as follows:

(𝑀14, |0⟩⊗14) |= [networkcoding]𝑝(1, 2, |EPR⟩) ∧ 𝑝(4, 5, |EPR⟩).

5. Implementation of Probabilistic Dynamic Quantum Logic

This section describes the implementation of PDQL in Maude [5], a specification/programming
language based on rewriting logic [20]. Hence, the notations used in this section follow the
Maude syntax.

5.1. Syntax of Probabilistic Dynamic Quantum Logic

Recalling the syntax of Basic Dynamic Quantum Logic (BDQL) in our previous work [4], we
defined two sorts AtomicProg and Prog for atomic programsΠ0 and star-free regular programs
Π, respectively, where AtomicProg is a subsort of Prog. Additionally, we defined several
operators for atomic programs: I(_), H(_), X(_), Y(_), and Z(_). These operators take a
natural number as input, denoting the index of a qubit of a pure state on which the quantum
gates 𝐼 , 𝐻 , 𝑋 , 𝑌 , and 𝑍 , will be applied, respectively. Furthermore, CX(_,_) and SWAP(_,_)
operators take two natural numbers as inputs, denoting the indices of two qubits of a pure state
on which CX and SWAP gates will be applied. We also defined abort, skip, _;_ , _U_, and
_? operators to construct star-free regular programs in BDQL, as specified in Section 2.

We defined two sorts AtomicFormula and Formula for atomic formulas 𝐿0 and general
formulas 𝐿 in BDQL, respectively, where AtomicFormula is a subsort of Formula. Addition-
ally, we defined several operators for constructing formulas in BDQL: P(_,_) and P(_,_,_)
operators are atomic formulas representing projections of the forms 𝑝(𝑖, |𝜓⟩) and 𝑝(𝑖, 𝑗, |Ψ⟩), re-
spectively; and the neg_, _/\_, and [_]_ operators to construct formulas in BDQL, as specified
in Section 2. Moreover, the if_then_else_fi command in Section 4.2 was also implemented
for convenient use.

Regarding the syntax of Probabilistic Dynamic Quantum Logic (PDQL), we extend the syntax
of BDQL by introducing the probabilistic operator as follows:

op _with prob >=_ : Formula Scalar -> Formula [ctor] .

op _with prob >_ : Formula Scalar -> Formula [ctor] .

op _with prob <=_ : Formula Scalar -> Formula [ctor] .

op _with prob <_ : Formula Scalar -> Formula [ctor] .

op _with prob ==_ : Formula Scalar -> Formula [ctor] .

op _with prob =/=_ : Formula Scalar -> Formula [ctor] .

where the five operators above explicitly denote the probabilistic operators P≥𝑟𝐴, P>𝑟𝐴,
P≤𝑟𝐴, P<𝑟𝐴, P=𝑟𝐴, P ̸=𝑟𝐴, respectively, and 𝑟 is a rational number ∈ [0, 1]. However, we
define 𝑟 as belonging to a sort of Scalar in our formalization because we also want to reason on
symbolic complex constants included in the value of probability.



5.2. Semantics of Probabilistic Dynamic Quantum Logic

We extend the semantics of BDQL to describe the semantics of PDQL by introducing the
following equations, which strictly follow Theorem 3.1. For the sake of simplicity, we only
describe equations used for _with prob >=_ operator representing the probabilistic operator
P≥𝑟𝐴, while other operators are similar.

We define some Maude variables before use as follows: Q is a Maude variable of quantum
states, Phi is a Maude variable of formulas, Prob is a Maude variable of scalars, M is a Maude
variable of matrices, and N, N1, and N2 is Maude variables of natural numbers.

We first handle the probabilistic operator in a formula as follows:

ceq Q |= P(N, M) with prob >= Prob = emptyJS if (Q).Prob(N, M) .>= Prob .

ceq Q |= P(N1, N2, M) with prob >= Prob = emptyJS if (Q).Prob(N1, N2, M) .>= Prob.

where emptyJS denote success in checking and .>= operator denotes “greater than or equal
to” when comparing two complex numbers.

We then handle the probabilistic operator in the dynamic modality as follows:

ceq Q |= [(P(N, M) with prob >= Prob)?] Phi = Q |= [P(N, M)?] Phi

if (Q).Prob(N, M) .>= Prob .

With respect to the equations specified in our support tool, (𝑀, 𝑠) |= 𝐴 if s |= A is simplified
to emptyJS. Otherwise, (𝑀, 𝑠) ̸|= 𝐴 if s |= A is not simplified to emptyJS.

6. Experimental Results

In this section, we illustrate the application of our support tool for verifying Quantum Relay
Scheme in Maude, using it as an example. Similar procedures can be done for verifying other
quantum programs, which are publicly available at https://github.com/canhminhdo/DQL. Fol-
lowing that, we summarize the experimental results for several quantum programs employed in
our experiments, including Superdense Coding [7], Quantum Teleportation [8], Quantum Secret
Sharing [9], Entanglement Swapping [10], Quantum Relay Scheme [11], Bidirectional Quantum
Teleportation [12], Two-qubit Quantum Teleportation [14], Quantum Gate Teleportation [13],
and Quantum Network Coding [15].

Assuming that RELAY-SCHEME represents the specification of Quantum Relay Scheme,
initQState represents for the initial state for RELAY-SCHEME, and qubitAt denotes the
function to retrieve a single qubit at a specific index. We can verify the correctness of Quantum
Relay Scheme using our support tool by executing the following reduce command in Maude:

red in RELAY-SCHEME : initQState |= [

H(1) ; CX(1, 2) ; H(3) ; CX(3, 4) ; CX(0, 1) ; H(0) ;

if P(1, |0>) with prob >= 1/2 then skip else X(2) fi ;

if P(0, |0>) with prob >= 1/2 then skip else Z(2) fi ;

CX(2, 3) ; H(2) ;

if P(3, |0>) with prob >= 1/2 then skip else X(4) fi ;

if P(2, |0>) with prob >= 1/2 then skip else Z(4) fi

] P(4, qubitAt(initQState, 0)) .



Table 1
Experimental results with our support tool for several quantum programs in PDQL

Protocol Qubits Rewrite Steps Verification Time

Superdense Coding 2 2,451 1ms

Quantum Teleportation 3 9,034 4ms

Quantum Secret Sharing 4 39,041 18ms

Entanglement Swapping 4 14,272 6ms

Quantum Relay Scheme 5 44,939 26ms

Bidirectional Quantum Teleportation 6 47,717 27ms

Two-qubit Quantum Teleportation 6 660,313 238ms

Quantum Gate Teleportation 6 667,806 250ms

Quantum Network Coding 14 11,568,281 4,811ms

The reduce command automatically performs an equational simplification process based on
the equations defined in our tool. Within just a few moments, the command returns an emptyJS
result. Consequently, this confirms the correctness of Quantum Relay Scheme with probability
intentionally added by using our support tool, the implementation of PDQL in Maude. The
property being verified informally says that the first qubit of the initial quantum state at index
0 is correctly teleported to the fifth qubit at index 4 in the final quantum state.

We conducted experiments on an iMac equipped with a 4 GHz microprocessor with eight
cores and 32 GB memory of RAM. Table 1 presents the experimental results. We have success-
fully confirmed the correctness of Superdense Coding [7], Quantum Teleportation [8], Quantum
Secret Sharing [9], Entanglement Swapping [10], Quantum Relay Scheme [11], Bidirectional
Quantum Teleportation [12], Quantum Gate Teleportation [13], Two-qubit Quantum Telepor-
tation [14], and Quantum Network Coding [15] in accordance with the specified properties
outlined in Section 4. Comparing to our previous work [4], we extend our case studies by adding
additional quantum programs to be verified with and without the probability. For all case studies
from two to 14 qubits, we can quickly verify their correctness within just a few moments using
our support tool despite the considerable number of rewrite steps involved. These results would
have been extremely challenging to obtain without the assistance of computer programs like
our support tool, especially in the case of Quantum Network Coding. This shows the usefulness
of our automated approach for verifying quantum programs in PDQL, employing the symbolic
approach for quantum computation from [6].



7. Related Work

Quantum Hoare Logic (QHL), as introduced by M. Ying in his work [21], was conceived with the
aim of serving as a quantum counterpart to Hoare Logic. When examining the logical aspects,
BDQL, in contrast to QHL, possesses the capability to express more foundational elements
within quantum programs. Specifically, QHL faces limitations when dealing with the if · · ·fi
statement, which represents non-deterministic measurements, as it cannot be further divided.
In contrast, BDQL can explicitly express its non-deterministic characteristic by employing the
choice operator ∪. Additionally, it’s worth noting that QHL lacks the inclusion of a test operator
in its syntax and does not support probability in its formulas.

In our paper, we used Maude as our implementation language. In contrast, the work by [22]
utilized PRISM, a probabilistic symbolic model checker, to verify quantum protocols. Unlike our
approach, [22] requires the task of enumerating states and precomputing state transitions, which
are then encoded into a specification in PRISM. Conversely, our method doesn’t necessitate this
state enumeration and precomputing state transitions because we formalize both the quantum
computation and the semantics of PDQL using equations. The verification problem is carried
out automatically through an equational simplification process within Maude. Moreover, they
only support a small number of qubits, saying less than five qubits. As demonstrated, we can
verify Quantum Network Coding with 14 qubits within a few moments, demonstrating the
scalability of our approach.

8. Conclusion

We have extended Basic Dynamic Quantum Logic (BDQL) to Probabilistic Dynamic Quantum
Logic (PDQL) to verify probabilistic quantum programs by introducing the probabilistic operator
P≥𝑟 and some others in the formulas of PDQL. We have also developed a support tool in Maude
to automate the entire verification process. Several quantum programs have been verified
automatically using the support tool, demonstrating the usefulness of PDQL and our support
tool. As one piece of our future work, we would like to conduct more case studies where the
probabilistic properties are realistically expressed, such as Quantum Search Algorithm and
Quantum Leader Election Protocol.
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