
Symbolic Model Checking Quantum Circuits With
Density Operators in Maude
Canh Minh Do*, Kazuhiro Ogata

Japan Advanced Institute of Science and Technology, 1-8 Asahidai, Nomi, Japan

Abstract
We proposed a symbolic approach to model checking quantum circuits using a set of laws from quantum
mechanics and basic matrix operations with Dirac notation and used Maude, a high-level specifica-
tion/programming language based on rewriting logic, to implement our symbolic approach. However,
it only supports the formalization of pure states but not mixed states of quantum systems. This paper
extends our current symbolic approach to deal with mixed states of quantum systems by using density
operators for their representations. Once a quantum circuit is formalized by our proposed way with an
initial state and a desired property expressed in Linear Temporal Logic (LTL), we use a built-in Maude
LTL model checker to verify whether the quantum circuit enjoys the desired property from the initial
state automatically. As case studies, we successfully verify several quantum communication protocols:
Superdense Coding, Quantum Teleportation, Quantum Secret Sharing, and Entanglement Swapping.

Keywords
Mixed States, Density Operators, Quantum circuits, Dirac notation, Symbolic Model Checking, Maude

1. Introduction

Quantum computing represents a new frontier in computation, offering the potential to solve
hard problems, which were previously considered intractable for the current computing tech-
nologies. For example, Shore’s fast algorithm [1] can break the security of modern cryptographic
systems relying on discrete logarithms and factoring in the future once practical quantum com-
puters are available. To design and implement such quantum algorithms, quantum circuits
are often used as a model of quantum computation. Unlike classical circuits, quantum circuits
manipulate qubits using quantum operations (e.g., quantum gates). Because quantum computa-
tion is counter-intuitive and distinct from classical computing due to different principles, such
as superposition, entanglement, and measurement, it is challenging to design and implement
quantum algorithms (or quantum circuits) accurately. Therefore, it is crucial to verify that
quantum circuits enjoy some desired properties in preparing for the quantum era.

Our research group proposed a symbolic approach [2] to model checking quantum circuits
using a set of laws from quantum mechanics and basic matrix operations with Dirac notation [3]
and used Maude [4], a high-level specification/programming language based on rewriting

The 2nd International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols, Novem-
ber 11, 2023, Brisbane, Australia
*Corresponding author.
$ canhdo@jaist.ac.jp (C. M. Do); ogata@jaist.ac.jp (K. Ogata)
� 0000-0002-1601-4584 (C. M. Do); 0000-0002-4441-3259 (K. Ogata)

logic [5], to implement our symbolic approach. However, it only supports the formalization of
pure states but not mixed states of quantum systems. In many practical situations, a quantum
system is not a single, well-defined state but a statistical mixture of multiple pure states. There-
fore, it requires the formalization of mixed states to describe the probabilities associated with
each pure state. This paper extends our current symbolic approach [2] to deal with mixed states
of quantum systems by using density operators for their representations. Once a quantum
circuit is formalized by our proposed way with an initial state and a desired property expressed
in Linear Temporal Logic (LTL), we use the built-in Maude LTL model checker to automati-
cally verify whether the quantum circuit enjoys the desired property from the initial state. As
case studies, we successfully verify several quantum communication protocols: Superdense
Coding [6], Quantum Teleportation [7], Quantum Secret Sharing [8], and Entanglement Swap-
ping [9]. This demonstrates the usefulness of our symbolic model checking quantum circuits
with density operators in Maude. The support tool and case studies are publicly available at
https://github.com/canhminhdo/QTC-Maude under the mixed-states folder.

The rest of the paper is organized as follows: Sect. 2 provides basic quantum mechanics,
symbolic reasoning for quantum computation based on Dirac notation, and Kripke structure;
Sect. 3 describes the formalization of qubits, quantum gates, and quantum circuits; Sect. 4
demonstrates how to use our approach to model checking for Quantum Teleportation; Sect. 5
shows the experimental results with our support tool; Sect. 6 presents some existing work; and
Sect. 7 concludes the paper with some pieces of future work.

2. Preliminaries

Firstly, we describe some basic notations from quantum mechanics based on linear algebra
(refer to [10] for more details). Secondly, we describe symbolic reasoning [2, 11] to reason
about quantum computation based on Dirac notation. Lastly, we describe Kripke structures to
formalize quantum systems.

2.1. Basic Quantum Mechanics

In classical computing, the fundamental unit of information is a bit whose value is either 0
or 1. In quantum computing, the counterpart is a quantum bit or qubit, which has two basis
states, conventionally written in Dirac notation [3] as |0⟩ and |1⟩, corresponding to one-bit

classical values, whose values are two column vectors

(︃
1

0

)︃
and

(︃
0

1

)︃
, respectively. In quantum

theory, a general state of a quantum system is a superposition or linear combination of basis
states. A single qubit has state |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are complex numbers
such that |𝛼|2 + |𝛽|2 = 1. States can be represented by column complex vectors as follows:

|𝜓⟩ =
(︃
𝛼

𝛽

)︃
= 𝛼 |0⟩+ 𝛽 |1⟩, where {|0⟩ , |1⟩} forms an orthonormal basis of the 2D complex

vector space. Formally, a quantum state is a unit vector in a Hilbert space ℋ, which is equipped
with an inner product satisfying some axioms.

The basis {|0⟩ , |1⟩} is called as the standard basis. Besides, we have some other bases of
interest, such as diagonal (or dual, or Hadamard) basis consisting of the following vectors:

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩)

The evolution of a closed quantum system can be performed by a unitary transformation.
If the state of a qubit is represented by a column vector, then a unitary transformation 𝑈 can
be represented by a complex-value matrix such that 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 or 𝑈 † = 𝑈−1, where
𝑈 † is the conjugate transpose of 𝑈 . The trace of 𝑈 is defined as 𝑡𝑟(𝑈) =

∑︀
𝑖 ⟨𝜑𝑖|𝑈 |𝜑𝑖⟩ for

some given orthonormal basis {|𝜑𝑖⟩} of ℋ. 𝑈 acts on the Hilbert space ℋ transforming a state
|𝜓⟩ to a state |𝜓′⟩ by a matrix multiplication such that |𝜓′⟩ = 𝑈 |𝜓⟩. There are some common
quantum gates: the Hadamard gate 𝐻 , the identity gate 𝐼 , the Pauli gates 𝑋 , 𝑌 , and 𝑍 , and the
controlled-NOT gate CX . Note that the CX gate performs on two qubits, while the remaining
gates perform on a single qubit. Their matrix representations are as follows:

I 2 =

(︃
1 0

0 1

)︃
, X =

(︃
0 1

1 0

)︃
, Y =

(︃
0 −𝑖
𝑖 0

)︃
,

Z =

(︃
1 0

0 −1

)︃
, 𝐻 = 1√

2

(︃
1 1

1 −1

)︃
, CX =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎠.

where 𝑖 is the imaginary unit. For example, the Hadamard gate on a single qubit performs the
mapping |0⟩ ↦→ 1√

2
(|0⟩+ |1⟩) and |1⟩ ↦→ 1√

2
(|0⟩ − |1⟩). The controlled-NOT gate on pairs of

qubits performs the mapping |00⟩ ↦→ |00⟩ , |01⟩ ↦→ |01⟩ , |10⟩ ↦→ |11⟩ , |11⟩ ↦→ |10⟩, which
can be understood as inverting the second qubit (referred to as the target) if and only if the first
qubit (referred to as the control) is one.

A quantum measurement is described as a collection {𝑀𝑚} of measurement operators, where
the indices𝑚 refer to the measurement outcomes. It is required that the measurement operators
satisfy

∑︀
𝑚𝑀 †

𝑚𝑀𝑚 = Iℋ. If the state of a quantum system is |𝜓⟩ before the measurement,
then the probability for the result 𝑚 is as follows:

𝑝(𝑚) = ⟨𝜓|𝑀 †
𝑚𝑀𝑚 |𝜓⟩,

and the state of the quantum system after the measurement is 𝑀𝑚|𝜓⟩√
𝑝(𝑚)

provided that 𝑝(𝑚) > 0.

For example, if a qubit is in state 𝛼 |0⟩+ 𝛽 |1⟩ and measuring with {𝑀0,𝑀1} operators, we
have the result 0 with probability |𝛼|2 at the post-measurement state |0⟩ and the result 1 with
probability |𝛽|2 at the post-measurement state |1⟩, where 𝑀0 = |0⟩× ⟨0| and 𝑀1 = |1⟩× ⟨1|.

For multiple qubits, we use the tensor product of Hilbert spaces. Let ℋ1 and ℋ2 be two
Hilbert spaces. Their tensor product ℋ1 ⊗ℋ2 is defined as a vector space consisting of linear
combinations of the vectors |𝜓1𝜓2⟩ = |𝜓1⟩ |𝜓2⟩ = |𝜓1⟩⊗|𝜓2⟩, where |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈ ℋ2.
Systems of two or more qubits may be in entangled states, meaning that states of qubits are

correlated and inseparable. Entanglement shows that an entangled state of two qubits cannot
be expressed as a tensor product of single-qubit states. We can use 𝐻 and CX gates to create
entangled states as follows: CX ((𝐻 ⊗ I) |00⟩) = 1√

2
(|00⟩+ |11⟩).

A pure quantum state can be represented by a ket vector |𝜓⟩, while a mixed state represents
the probabilistic mixtures of pure states and can be described by a density operator. Given
{(𝑝𝑖, |𝜓𝑖⟩)} be an ensemble of pure states |𝜓𝑖⟩, where 𝑝𝑖 ≥ 0 and

∑︀
𝑖 𝑝𝑖 = 1, 𝜌 =

∑︀
𝑖 𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖|

is the density operator representing the mixed state. 𝑈 transforms a mixed state 𝜌 to a mixed
state 𝜌′ by a matrix multiplication such that 𝜌′ = 𝑈𝜌𝑈 †. For the quantum measurement {𝑀𝑚}
above, if the mixed state of a quantum system is 𝜌 before the measurement, then the probability
for the result 𝑚 is as follows:

𝑝(𝑚) = 𝑡𝑟(𝑀 †
𝑚𝑀𝑚𝜌),

and the mixed state after the measurement is 𝑀𝑚𝜌𝑀
†
𝑚

𝑝(𝑚) provided that 𝑝(𝑚) > 0.

2.2. Symbolic Reasoning

We proposed symbolic reasoning [2, 11] based on Dirac notation with scalars using a set of laws
from quantum mechanics and basic matrix operations for reasoning about quantum computation
and developed a support tool in Maude to automate the reasoning. This section briefly describes
terms used in our symbolic reasoning and laws used to reduce terms. The reader is recommended
to refer to [2] for more details.

2.2.1. Terms

Terms are built from scalars and basis vectors with some constructors.

• Scalars are complex numbers. We extend rational numbers supported in Maude to deal
with complex numbers. Some constructors for scalars, such as multiplication, fraction,
addition, conjugation, absolute, power, and square root are formalized, but we do not
mention them here to make the paper concise.

• Basis vectors are the standard basis written in Dirac notation as |0⟩ and |1⟩.
• Constructors for matrices consist of scalar multiplication of matrices ·, matrix product ×,

matrix addition +, tensor product ⊗, and the conjugate transpose 𝐴† of a matrix 𝐴.

In Dirac notation, ⟨0| is the dual of |0⟩ such that ⟨0|† = |0⟩ and |0⟩† = ⟨0|; similarly for ⟨1|.
The terms |𝑗⟩ × ⟨𝑘| and the inner product of |𝑗⟩ and |𝑘⟩ may be written shortly as |𝑗⟩ ⟨𝑘| and
⟨𝑗|𝑘⟩ for any 𝑗, 𝑘 ∈ {0, 1}. By using these notations with the laws below, we can intuitively
explain how quantum operations work.

2.2.2. Laws

Table 1 presents a set of laws derived from the properties of quantum mechanics and basic
matrix operations. Because |0⟩ and |1⟩ can be viewed as 2× 1 matrices, then the laws actually
describe matrix calculations with Dirac notation, zero and identity matrices, and scalars. These

Table 1
A set of laws used for symbolic reasoning

No. Law

L1 ⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨1|1⟩ = ⟨0|1⟩ = 0

L2 Associativity of ×,+,⊗ and Commutativity of +

L3 0 ·𝐴𝑚×𝑛 = O𝑚×𝑛, 𝑐 ·O = O, 1 ·𝐴 = 𝐴

L4 𝑐 · (𝐴+𝐵) = 𝑐 ·𝐴+ 𝑐 ·𝐵
L5 𝑐1 ·𝐴+ 𝑐2 ·𝐴 = (𝑐1 + 𝑐2) ·𝐴
L6 𝑐1 · (𝑐2 ·𝐴) = (𝑐1 · 𝑐2) ·𝐴
L7 (𝑐1 ·𝐴)× (𝑐2 ·𝐵) = (𝑐1 · 𝑐2) · (𝐴×𝐵)

L8 𝐴× (𝑐 ·𝐵) = (𝑐 ·𝐴)×𝐵 = 𝑐 · (𝐴×𝐵)

L9 𝐴⊗ (𝑐 ·𝐵) = (𝑐 ·𝐴)⊗𝐵 = 𝑐 · (𝐴⊗𝐵)

L10 O𝑚×𝑛 ×𝐴𝑛×𝑝 = 𝐴𝑚×𝑛 ×O𝑛×𝑝 = O𝑚×𝑝

L11 I𝑚 ×𝐴𝑚×𝑛 = 𝐴𝑚×𝑛 × I 𝑛 = 𝐴𝑚×𝑛

L12 𝐴+O = O+𝐴 = O

L13 O𝑚×𝑛 ⊗𝐴𝑝×𝑞 = 𝐴𝑝×𝑞 ⊗O𝑚×𝑛 = O𝑚𝑝×𝑛𝑞

L14 𝐴× (𝐵 +𝐶) = 𝐴×𝐵 +𝐴×𝐶

L15 (𝐴+𝐵)×𝐶 = 𝐴×𝐶 +𝐵 ×𝐶

L16 (𝐴⊗𝐵)× (𝐶 ⊗𝐷) = (𝐴×𝐶)⊗ (𝐵 ×𝐷)

L17 𝐴⊗ (𝐵 +𝐶) = 𝐴⊗𝐵 +𝐴⊗𝐶

L18 (𝐴+𝐵)⊗𝐶 = 𝐴⊗𝐶 +𝐵 ⊗𝐶

L19 (𝑐 ·𝐴)† = 𝑐* ·𝐴†, (𝐴×𝐵)† = 𝐵† ×𝐴†

L20 (𝐴+𝐵)† = 𝐴† +𝐵†, (𝐴⊗𝐵)† = 𝐴† ⊗𝐵†

L21 𝐼𝑚
† = 𝐼𝑚,𝑂

†
𝑚×𝑛 = 𝑂𝑛×𝑚, (𝐴

†)† = 𝐴

L22 |0⟩† = ⟨0| , ⟨0|† = |0⟩ , |1⟩† = ⟨1| , ⟨1|† = |1⟩

laws are described by equations in Maude and are used to automatically reduce terms until no
more matrix operation is applicable. Some laws dedicated to simplifying the expressions about
complex numbers are also formalized in Maude by means of equations.

2.3. Kripke Structures

A Kripke structure 𝐾 is ⟨𝑆, 𝐼, 𝑇,𝐴, 𝐿⟩ [12], where 𝑆 is a set of states, 𝐼 ⊆ 𝑆 is the set of initial
states, 𝑇 ⊆ 𝑆 × 𝑆 is a left-total binary relation over 𝑆, 𝐴 is a set of atomic propositions and
𝐿 is a labeling function whose type is 𝑆 → 2𝐴. Each element (𝑠, 𝑠′) ∈ 𝑇 is called a state
transition from 𝑠 to 𝑠′ and 𝑇 may be called the state transitions (with respect to 𝐾). For a state
𝑠 ∈ 𝑆, 𝐿(𝑠) is the set of atomic propositions that hold in 𝑠. A path 𝜋 is an infinite sequence
𝑠0, . . . , 𝑠𝑖, 𝑠𝑖+1, . . . such that 𝑠𝑖 ∈ 𝑆 and (𝑠𝑖, 𝑠𝑖+1) ∈ 𝑇 for each 𝑖. We use the following
notations for paths: 𝜋𝑖 ≜ 𝑠𝑖, 𝑠𝑖+1, . . ., 𝜋𝑖 ≜ 𝑠0, . . . , 𝑠𝑖, 𝑠𝑖, 𝑠𝑖, . . ., 𝜋(𝑖) ≜ 𝑠𝑖, where ≜ is used as
“be defined as.” 𝜋𝑖 is obtained by deleting the first 𝑖 states 𝑠0, 𝑠1, . . . , 𝑠𝑖−1 from 𝜋. 𝜋𝑖 is obtained

by taking the first 𝑖+1 states 𝑠0, 𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖 and adding 𝑠𝑖 unboundedly many times at the
end. 𝜋(𝑖) is the 𝑖th state 𝑠𝑖. Let 𝒫 be the set of all paths. 𝜋 is called a computation if 𝜋(0) ∈ 𝐼 .
Let 𝒞 be the set of all computations.

The syntax of a formula 𝜙 in LTL for 𝐾 is as follows:

𝜙 ::= ⊤ | 𝑝 | ¬𝜙 | 𝜙 ∧ 𝜙 | ○ 𝜙 | 𝜙 𝒰 𝜙

where 𝑝 ∈ 𝐴. Let ℱ be the set of all formulas in LTL for 𝐾 . An arbitrary path 𝜋 ∈ 𝒫 of 𝐾 and
an arbitrary LTL formula 𝜙 ∈ ℱ of 𝐾 , 𝐾,𝜋 |= 𝜙 is inductively defined as follows:

• 𝐾,𝜋 |= ⊤
• 𝐾,𝜋 |= 𝑝 iff 𝑝 ∈ 𝐿(𝜋(0))

• 𝐾,𝜋 |= ¬𝜙1 iff 𝐾,𝜋 ̸|= 𝜙1

• 𝐾,𝜋 |= 𝜙1 ∧ 𝜙2 iff 𝐾,𝜋 |= 𝜙1 and 𝐾,𝜋 |= 𝜙2

• 𝐾,𝜋 |= ○𝜙1 iff 𝐾,𝜋1 |= 𝜙1

• 𝐾,𝜋 |= 𝜙1 𝒰 𝜙2 iff there exists a natural number 𝑖 such that 𝐾,𝜋𝑖 |= 𝜙2 and for all
natural numbers 𝑗 < 𝑖, 𝐾,𝜋𝑗 |= 𝜙1

where 𝜙1 and 𝜙2 are LTL formulas. Then, 𝐾 |= 𝜙 iff 𝐾,𝜋 |= 𝜙 for each computation 𝜋 ∈ 𝒞
of 𝐾 . ○ and 𝒰 are called the next temporal connective and the until temporal connective,
respectively. We define ♢𝜙 ≜ ⊤ 𝒰 𝜙, where ♢ is called the eventual temporal connective. In
this paper, we use LTL formulas to express desired properties under verification for our case
studies.

In this paper, a state is expressed as a braced associative-commutative (AC) collection of
name-value pairs, where a name may have parameters. The order of elements is not relevant
in AC collections, such as sets. AC collections are called soups, and name-value pairs are
called observable components. That is, a state is expressed as a braced soup of observable
components. The juxtaposition operator is used as the constructor of soups. Let 𝑜𝑐1, 𝑜𝑐2, 𝑜𝑐3 be
observable components, and then 𝑜𝑐1 𝑜𝑐2 𝑜𝑐3 is the soup of those three observable components.
Since the order is irrelevant because of AC, 𝑜𝑐1 𝑜𝑐2 𝑜𝑐3 is the same as some others, such as
𝑜𝑐3 𝑜𝑐2 𝑜𝑐1. A state is expressed as {𝑜𝑐1 𝑜𝑐2 𝑜𝑐3}. In this paper, rewrite rules are used to specify
state transitions. Concretely, we use Maude [4], a programming/specification language based
on rewriting logic. Maude makes it possible to specify complex systems flexibly and is also
equipped with a built-in LTL model checker to conduct model checking experiments.

3. Formal Specification

This section summarizes how we formalize qubits, quantum gates, measurements, and then
quantum circuits in [2] and describes how we extend it to deal with mixed states.

3.1. Formalization of Qubits, Gates, and Measurements

Pure states of qubits are represented in our formalization as the linear combination of tensor
product of the standard basis in Dirac notation with scalars. This representation is also adopted

for quantum gates. In our work, we exclusively focus on binary projective measurements
conducted on the standard basis. This implies that our measurement operators consist of two
elements, denoted as 𝑀0 and 𝑀1. To formalize a mixed state, we prepare an ensemble of pure
states and calculate its corresponding density operator as described in Section 2.

3.2. A Formalization of Quantum Circuits

Our approach to formalizing quantum circuits begins by representing them as a sequence
comprising various actions, including quantum gates, measurements, qubit initializations, and
other operations, as depicted in Figure 1. Following this, we establish Kripke structures tailored
to quantum circuits to conduct model checking that quantum circuits enjoy desired properties.

3.2.1. Elements of Quantum Circuits

A whole quantum state is formalized as a density operator representing a mixed state. In
our previous work [2], a whole quantum state is formalized as a pure state, which is a linear
combination of the tensor product of basic vectors with Dirac notation and complex numbers.

Classical bits are formalized the same as in our previous work [2]. They are represented as a
mapping from circuit indices to Boolean values. Each entry in this mapping takes the form of
(𝑖 ↦→ 𝑏), indicating that the value of the classical bit stored at position 𝑐𝑖 is 𝑏, with 𝑏 taking on
values of either 0 or 1.

A sequence comprising quantum gates, measurements, and conditional gates in a quantum
circuit is formalized as a list of actions. Each action can take one of the following forms:

• I(𝑖) applies the I gate on qubit at index 𝑖,
• X(𝑖) applies the X gate on qubit at index 𝑖,
• Y(𝑖) applies the Y gate on qubit at index 𝑖,
• Z(𝑖) applies the Z gate on qubit at index 𝑖,
• H(𝑖) applies the H gate on qubit at index 𝑖,
• CX(𝑖, 𝑗) applies the CX gate on qubits at indices 𝑖 and 𝑗,
• CY(𝑖, 𝑗) applies the CY gate on qubits at indices 𝑖 and 𝑗,
• CZ(𝑖, 𝑗) applies the CZ gate on qubits at indices 𝑖 and 𝑗,
• SWAP(𝑖, 𝑗) applies the SWAP gate on qubits at indices 𝑖 and 𝑗,
• CCX(𝑖, 𝑗, 𝑘) applies the CCX gate on qubits at indices 𝑖, 𝑗 and 𝑘,
• CCZ(𝑖, 𝑗, 𝑘) applies the CCX gate on qubits at indices 𝑖, 𝑗 and 𝑘,
• CSWAP(𝑖, 𝑗, 𝑘) applies the CSWAP gate on qubits at indices 𝑖, 𝑗 and 𝑘,
• M(𝑖) measures 𝑞𝑖 with the standard basis,
• c[𝑖] == 𝑏 ? AL checks if the classical bit at 𝑐𝑖 equals 𝑏, then a list AL of actions is

executed.

All actions except the two last actions representing measurements and conditional actions
are called basic actions. In this paper, we support more quantum gates than in our previous
work [2], including S , T , CY , CZ , SWAP , CCY , CCZ , and CSWAP gates.

3.2.2. Kripke Structures of Quantum Circuits

Let 𝐾 be the Kripke structure formalizing a quantum circuit. In our formalization, we define
five distinct observable components as follows:

• (mState: 𝑚𝑠) denotes the mixed quantum state 𝑚𝑠.
• (#qubits: 𝑛) denotes the number of qubits 𝑛.
• (bits: 𝑏𝑚) denotes the classical bits obtained from measurements and stored in a bit

map 𝑏𝑚.
• (prob: 𝑝) denotes the probability 𝑝 at the current quantum state.
• (actions: 𝑎𝑙) denotes the action list 𝑎𝑙, guiding us on how the circuit works.
• (isEnd: 𝑏) denotes termination with Boolean flag 𝑏.

Each state in 𝑆 is expressed as {𝑜𝑏𝑠}, where 𝑜𝑏𝑠 is a soup of those five distinct observable
components. The mState and #qubits observable components are newly added to deal with
mixed states compared to our previous work [2].
𝑇 now consists of six rewrite rules in our formalization. Let OCs be a Maude variable of

observable component soups, MS and MS’ be Maude variables of whole quantum states, BM be
a Maude variable of bit maps, Prob and Prob’ be Maude variables of scalars, AL and AL’ be
Maude variables of action lists, B be a Maude variable of Boolean values, and N, N’, N1, and N2
are Maude variables of natural numbers.

The first rewrite rule is as follows:

crl [U] : {(mState: MS) (actions: (A AL)) (#qubits: N) OCs}

=> {(mState: MS’) (actions: AL) (#qubits: N) OCs}

if isBasicAction(A) /\ MS’ := unitary(MS, A, N) .

The rule U simulates unitary transformation on the whole quantum state in mState observable
component if its basic action appears in actions observable component.

The next two rewrite rules are as follows:

crl [M0] :

{(mState: MS) (actions: (M(N’) AL)) (prob: Prob) (bits: BM) (#qubits: N) OCs}

=> {(mState: MS’) (actions: AL) (prob: (Prob .* Prob’)) (bits: insert(N’, 0, BM))

(#qubits: N) OCs}

if {mState: MS’, prob: Prob’} := measure(MS, N, P0, N’) .

crl [M1] :

{(mState: MS) (actions: (M(N’) AL)) (prob: Prob) (bits: BM) (#qubits: N) OCs}

=> {(mState: MS’) (actions: AL) (prob: (Prob .* Prob’)) (bits: insert(N’, 1, BM))

(#qubits: N) OCs}

if {mState: MS’, prob: Prob’} := measure(MS, N, P1, N’) .

where P0 and P1 are Maude constants of matrices representing the measurement operators
M 0 and M 1, respectively. Therefore, the rules M0 and M1 govern the process of measuring a
qubit at index N’ with the measurement operators M 0 and M 1, respectively. In these rules,
the classical outcomes are stored accordingly into the bit map in bits observable component;

the probabilities and the post-measurement mixed states are updated in prob and mState
observable components, respectively. It is important to note that these two rules introduce
non-deterministic probabilistic transitions when measuring a single qubit.

The next rewrite rule is identical to the one presented in our previous work [2]. It outlines
the processes of conditionally executing the next actions based on classical bits obtained from
measurements if applicable.

rl [cif] :

{(qstate: Q) (bits: ((N |-> N1),BM)) (actions: ((c[N] == N2 ? AL’) AL)) OCs}

=> {(qstate: Q) (bits: ((N |-> N1), BM))

(actions: ((if (N1 == N2) then AL’ else nil fi) AL)) OCs} .

This rule says that if c[N] == N2 ? AL’ exists in the action list and the classical bit N1 at
index N equals the conditional value N2, then the action list AL’ is added at the beginning of
the action list AL in actions observable component. This means that AL’ will be executed
next. Otherwise, it is simply ignored and AL remains unchanged.

The last two rules are the same as in our previous work [2] as follows:

rl [end] : {(actions: nil) (isEnd: false) OCs}

=> {(actions: nil) (isEnd: true) OCs} .

rl [stutter]: {(isEnd: true) OCs} => {(isEnd: true) OCs} .

The rule end indicates termination when the action list is empty, denoted as nil. On the other
hand, the rule stutter is to make 𝑇 total when isEnd observable component is true.

4. A Case Study: Quantum Teleportation

For the sake of simplicity, this section only demonstrates how to use our symbolic approach with
density operators to conduct model checking for Quantum Teleportation [7]. Meanwhile, other
communication protocols are similar and the full specifications of all quantum communication
protocols concerned in this paper are publicly available at https://github.com/canhminhdo/
QTC-Maude under the mixed-states folder.

4.1. Introduction

Quantum Teleportation, as described in [7], leverages the unique properties of entanglement in
quantum mechanics to transmit an unknown quantum state |𝜓⟩ from Alice to Bob, utilizing
only three qubits and two classical bits. This protocol holds significant importance because of
the no-cloning theorem [13], which prohibits the exact copy of an arbitrary unknown quantum
state. As a result, the protocol becomes a crucial method for transmitting an arbitrary unknown
quantum state from one source to another.

The circuit illustrated in Figure 1 presents how the protocol works. Alice manipulates on
qubits 𝑞0 and 𝑞1, and Bob manipulates on qubit 𝑞2 as follows:

where (x) denotes the tensor product; and a and b are Maude constants of scalars denoting
arbitrary scalars such that |a|2 + |b|2 = 1. We suppose that the mixed state consists of only
one pure state with a certain probability in the ensemble.

The set 𝐼 of initial states for Quantum Teleportation includes only one initial state as follows:

{(isEnd: false)

(#qubits: findN(ES))

(mState: convert(ES)

(prob: 1)

(bits: empty)

(actions: H(1) CX(1, 2) CX(0, 1) H(0)

M(0) M(1)

c[1] == 1 ? X(2)

c[0] == 1 ? Z(2))}

where findN(_) and convert(_) are two functions to calculate the number of qubits and the
density operator of a mixed state given an ensemble. Initially, isEnd observable component is
false, prob observable component is one, mState represent the corresponding density operator
of the symbolic state as the input state of the protocol, actions observable component contains
the action list describing how the protocol works.

4.3. Model Checking Quantum Teleportation

Let 𝐾 and init be the Kripke structure and the initial state for Quantum Teleportation,
respectively. In order to perform model checking on the Kripke structure 𝐾 and verify that
it satisfies the desired properties, we define the set of atomic propositions 𝐴 and the labeling
function 𝐿. 𝐴 contains one atomic proposition, denoted as isSuccess. 𝐿 is defined as follows:

eq {(isEnd: true) (mState: MS) (prob: Prob) (#qubits: N) OCs} |= isSuccess

= Prob > 0 implies

tr[1]((tr[0](MS, N)), N) == (I (x) I (x) (PSI x (PSI)^+)) .

eq {OCs} |= PROP = false [owise] .

where PSI is the input state of the protocol being transferred, the function tr[_](_,_) take
inputs as the index at which the information of the qubit is erased, the mixed state, and the
number of qubits. The function will erase information of a subsystem from the mixed state at
an index. Using this function we can retain the information of the qubit at the index 2 in the
density operator. This function works as the partial trace over a quantum system [10].

The two equations say that isSuccess holds at a state if the state contains (isEnd:
true), (mState: MS), (prob: Prob), and (#qbits: N) such that the condition tr[1]((

tr[0](MS, N)), N) == (I (x) I (x) (PSI x (PSI)^+) holds whenever Prob > 0
holds, meaning that the qubit received by Bob at the end is equal to the qubit sent by Alice at
the beginning with a non-zero probability by means of density operators. Notice that, the use of
density operators to represent quantum states can eliminate the global phase when comparing
two quantum states. Let teleProp be an LTL formula defined as <> isSuccess, where <> is
the eventual temporal connective.

Table 2
Experimental results with pure states and mixed states for representing quantum states

Protocol Qubits States
Pure States Mixed States

Rewrite Steps Time Rewrite Steps Time

Superdense Coding 2 9 685 ≈ 0ms 2,088 2ms

Quantum Teleportation 3 27 4,340 3ms 29,095 30ms

Quantum Secret Sharing 4 65 16,449 9ms 211,831 519ms

Entanglement Swapping 4 33 6,930 4ms 56,193 40ms

We want to model check that 𝐾 = ⟨𝑆, 𝐼, 𝑇,𝐴, 𝐿⟩ satisfies teleProp from the initial state
init in Maude as follows:

red modelCheck(init, teleProp) .

No counterexample is found in just a few moments and so 𝐾 satisfies teleProp. In other
words, we successfully verify the correctness of Quantum Teleportation by using our symbolic
model checking approach with density operators.

5. Experimental Results

We used an iMac that carries a 4 GHz microprocessor with eight cores and 32 GB memory RAM
to conduct experiments in this section. As case studies, we conduct model checking experiments
to verify the correctness of several quantum communication protocols with our approach in
which both pure states and mixed states are used for representing quantum states as follows:

• Superdense Coding [6] for transmitting two classical bits using an entangled state,
• Quantum Teleportation [7] for teleporting an arbitrary pure state by sending two bits of

classical information,
• Quantum Secret Sharing [8] for teleporting a pure state from a sender (Alice) to a receiver

(Bob) with the help of a third party (Charlie),
• Entanglement Swapping [9] for creating a new entangled state,

Superdense Coding is the simplest one that uses only two qubits; Quantum Teleportation
uses three qubits; Quantum Secret Sharing proposed relying on the mechanism of Quantum
Teleportation uses four qubits; and Entanglement Swapping uses four qubits. Note that the
properties being verified for both pure states and mixed states are identical in our experiments.
Our support tool and case studies are publicly available at https://github.com/canhminhdo/
QTC-Maude under the mixed-states folder.

The experimental results are shown in Table 2. The second and third columns denote the
number of qubits in each protocol and the number of states in the reachable state space of
each protocol under model checking, respectively. Notice that the number of states of each
protocol under model checking is the same for both pure states and mixed states. The fourth
and fifth columns denote the number of rewriting steps performed for each protocol and the

verification time when pure states are used to represent quantum states; and similarly for the
last two columns when mixed states are used. Note that, in these experiments, the mixed state
in each protocol consists of only one pure state with a certain probability in an ensemble.

Although all model checking experiments were completed in just a few moments, the number
of rewriting steps and the verification time for mixed states is considerably larger than that for
pure states. This is not surprising because we intentionally used an ensemble that contains only
one pure state with a certain probability in these experiments, and the pure state is represented
by a vector |𝜓⟩, while the mixed state is represented by a density operator |𝜓⟩⟨𝜓|, which is a
matrix. The calculation for a matrix is more expensive than that for a vector. However, with
mixed states, we can present a statistical mixture of multiple pure states and eliminate the
global phase compared with the pure states. Our symbolic model checking quantum circuits in
Maude can handle both pure states and mixed states, showing its usefulness in quantum circuit
verification.

6. Related Work

Gay et al. [14] introduced a method for employing classical model checkers, such as PRISM,
a probabilistic model checker, to verify quantum protocols. In their approach, each quantum
state is assigned a distinct number of identifiers and transitions from one unique number to
another representing the operations of quantum gates and measurements. However, this method
necessitates the prior enumeration of states and the computation of state transitions, which
are subsequently encoded into a PRISM specification. Despite their development of a tool
called PRISMGEN to automate this process, its practicality is limited in real-world scenarios,
supporting only two or three qubits due to the exponential proliferation of state numbers. In
contrast, our approach does not require the pre-enumeration of states, as quantum states are
directly formalized using Dirac notation with scalar values. Furthermore, we utilize rewrite
rules to represent the effects of quantum gates and measurements, rendering our approach
capable of handling a larger number of qubits. For instance, we have successfully verified the
correctness of Quantum Secret Sharing and Entanglement Swapping involving four qubits using
our approach.

Our approach to symbolic quantum circuit model checking draws inspiration from a prior
work by Yuan et al. [15], which closely resembles our methodology. However, it’s worth noting
that their approach primarily centers around theorem proving rather than model checking.
They adopt Dirac notation and a set of rules to formalize quantum states, gates, measurements,
and reason about quantum circuits within the Coq interactive theorem prover. Nevertheless, a
notable distinction is that their approach often necessitates users to supply essential lemmas
to facilitate the completion of their proofs, a task that is generally considered challenging. In
contrast, our approach operates entirely autonomously, requiring no human intervention.

7. Conclusion

We have extended our symbolic approach to deal with mixed states using density operators and
have developed a support tool in Maude. Several quantum communication protocols have been

successfully analyzed using our approach/support tool, including Superdense Coding, Quantum
Teleportation, Quantum Secret Sharing, and Entanglement Swapping. This demonstrates the
usefulness of our symbolic model checking quantum circuits with density operators in Maude.
As one piece of future work, we would conduct more case studies, where a statistical mixture of
multiple pure states is realistically presented in them.

Acknowledgments

The research was supported by JAIST Research Grant for Fundamental Research, by JST SICORP
Grant Number JPMJSC20C2, and by JSPS KAKENHI Grant Number JP23K19959.

References

[1] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in:
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134. doi:10.1109/SFCS.1994.365700.

[2] C. M. Do, K. Ogata, Symbolic model checking quantum circuits in maude, in: The 35th
International Conference on Software Engineering and Knowledge Engineering, SEKE
2023, 2023, pp. 103–108. doi:10.18293/SEKE2023-014.

[3] P. A. M. Dirac, A new notation for quantum mechanics, Mathematical Proceedings of the
Cambridge Philosophical Society 35 (1939) 416–418. doi:10.1017/S0305004100021162.

[4] M. Clavel, et al., All About Maude, volume 4350 of Lecture Notes in Computer Science,
Springer, 2007. doi:10.1007/978-3-540-71999-1.

[5] J. Meseguer, Twenty years of rewriting logic, The Journal of Logic and Algebraic Program-
ming 81 (2012) 721–781. doi:10.1016/j.jlap.2012.06.003.

[6] C. H. Bennett, S. J. Wiesner, Communication via one- and two-particle operators on
einstein-podolsky-rosen states, Phys. Rev. Lett. 69 (1992) 2881–2884. doi:10.1103/
PhysRevLett.69.2881.

[7] C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. Wootters, Teleporting an
unknown quantum state via dual classical and einstein-podolsky-rosen channels, Physical
review letters 70 (1993) 1895–1899. doi:10.1103/PhysRevLett.70.1895.

[8] M. Hillery, V. Bužek, A. Berthiaume, Quantum secret sharing, Physical Review A 59 (1999)
1829–1834. doi:10.1103/physreva.59.1829.

[9] M. Żukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, “Event-ready-detectors” Bell exper-
iment via entanglement swapping, Phys. Rev. Lett. 71 (1993) 4287–4290. doi:10.1103/
PhysRevLett.71.4287.

[10] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th An-
niversary Edition, Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

[11] T. Takagi, C. M. Do, K. Ogata, Automated quantum program verification in dynamic
quantum logic (to appear), in: DaLí: Dynamic Logic – New trends and applications, 2023.

[12] E. M. Clarke, T. A. Henzinger, H. Veith, R. Bloem (Eds.), Handbook of Model Checking,
Springer, 2018. doi:10.1007/978-3-319-10575-8.

[13] W. K. Wootters, W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982)
802–803. doi:10.1038/299802a0.

[14] S. Gay, R. Nagarajan, N. Papanikolaou, Probabilistic model–checking of quantum protocols,
2005. doi:10.48550/arXiv.quant-ph/0504007.

[15] W. Shi, Q. Cao, Y. Deng, H. Jiang, Y. Feng, Symbolic reasoning about quantum circuits in
coq, J. Comput. Sci. Technol. 36 (2021) 1291–1306. doi:10.1007/s11390-021-1637-9.

