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Abstract
Quantum circuits are typically used to design quantum algorithms at a high abstraction level without
considering specific hardware restrictions. To execute quantum circuits on an actual quantum device, they
must undergo a compilation process, transforming the high abstraction level into a low abstraction level
that conforms to all restrictions imposed on the target device. As a result, the original quantum circuits
and their compiled counterparts differ significantly. Therefore, it is crucial to verify the equivalence of
two quantum circuits constructed from quantum gates based on their functionality. This paper presents
a theoretical foundation for checking the equivalence of quantum circuits based on which an algorithm
is constructed. The equivalence of quantum circuits can be reduced to matrix equivalence modulo a
global phase. To achieve this, we compare each column vector of two matrices modulo the same global
phase, making it significantly faster than the actual matrix equivalence check, especially in cases of
non-equivalent quantum circuits.
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1. Introduction

Quantum computing is a rapidly emerging technology that uses the principles of quantum
mechanics to solve complex problems beyond the capabilities of current classical computing.
Several quantum algorithms have been proposed, showing significant improvements over
classical algorithms, such as Shor’s fast algorithms for discrete logarithms and factoring in
1994 [1]. Although practical quantum computers capable of running such algorithms effectively
are not yet available, recent exponential investments from big companies like IBM, Google,
Microsoft, and Intel bring the future of the quantum era within closer reach.

Quantum circuits are a natural model of quantum computation, comprising qubits and
quantum operations (e.g., quantum gates), that can be used to design and implement quantum
algorithms. However, quantum circuits are typically used to design quantum algorithms at
a high abstraction level without considering specific hardware restrictions. To execute the
quantum circuits on an actual quantum device, they have to undergo a compilation process,
transforming the high abstraction level to a low abstraction level that conforms to all restrictions
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imposed on the targeted device. More precisely, this compilation process has several key aspects
as follows. Firstly, quantum devices natively support only a limited set of quantum operations.
Consequently, quantum circuits intended for the target device must be expressed using only
these native quantum operations. This requires a decomposition (or translation) step of non-
native quantum operations into sequences of native ones [2, 3, 4]. Secondly, logical qubits
used in quantum circuits have to be mapped to physical qubits on the target device. However,
this mapping cannot be arbitrary because the target device imposes restrictions on which
physical qubits can interact with each other. To achieve this, a mapping (or routing) step is
required, which involves adding SWAP and Hadmard gates to quantum circuits [5, 6, 7]. Lastly,
after the decomposition and mapping steps, the size of quantum circuits tends to increase,
posing challenges for their execution on quantum devices due to noise and decoherence effects.
Therefore, an optimization step is required to reduce the size of quantum circuits in terms of the
number of quantum gates [8, 9, 10]. As a result of these processes, the quantum circuit defined
at a high abstraction level and its compiled counterpart defined at a low abstraction level are
significantly different. Therefore, it is crucial to verify the equivalence of two quantum circuits
based on their functionality.

The functionality of quantum circuits can be described by a sequence of quantum gates,
which are represented by unitary matrices. Given two quantum circuits constructed from
quantum gates in the form of 𝑈 = 𝑈𝑚 . . . 𝑈0 and 𝑈 ′ = 𝑈 ′

𝑚′ . . . 𝑈 ′
0, the two quantum circuits

are considered equivalent if 𝑈 is equal to 𝑈 ′ modulo a global phase, which is physically
unobservable [11]. Directly comparing 𝑈 and 𝑈 ′ is inefficient because it requires costly matrix-
matrix multiplications 𝑈𝑚 . . . 𝑈0 and 𝑈 ′

𝑚′ . . . 𝑈 ′
0 to obtain 𝑈 and 𝑈 ′ for comparison. Moreover,

if 𝑈 is significantly different from 𝑈 ′, constructing the entire elements of both matrices is
unnecessary. Instead, we can compare each column of two matrices modulo a global phase.
Concretely, for each basis vector |𝜑𝑖⟩ in an orthonormal basis of a Hilbert space, if 𝑈 |𝜑𝑖⟩ is
equal to 𝑈 ′ |𝜑𝑖⟩ modulo the same global phase, then the two quantum circuits are equivalent. It
is important to note that we may need a few iterations to check that some quantum circuits
are not equivalent in cases of non-equivalent quantum circuits, making it significantly faster
than the actual matrix equivalence check. We present a theoretical foundation for checking the
equivalence of quantum circuits with a theorem to guarantee the correctness of our approach.
An algorithm is also constructed based on our theorem.

The rest of the paper is organized as follows: Sect. 2 provides the basics of quantum mechanics
related mostly to linear algebra, Sect. 3 proposes a theoretical foundation of equivalence checking
of quantum circuits in this work based on which an algorithm is constructed, Sect. 4 presents
some existing work, and Sect. 5 concludes the paper with some pieces of future work.

2. Basic Quantum Mechanics

In classical computing, the fundamental unit of information is a bit whose value is either 0
or 1. In quantum computing, the counterpart is a quantum bit or qubit, which has two basis
states, conventionally written in Dirac notation [12] as |0⟩ and |1⟩, which denote two column

vectors

(︃
1

0

)︃
and

(︃
0

1

)︃
, respectively. In quantum theory, a general state of a quantum system



is a superposition or linear combination of basis states. A quantum state is a unit vector in a
Hilbert space ℋ, which is a vector space equipped with an inner product such that each Cauchy
sequence has a limit. The state of a single qubit is |𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are
complex numbers such that |𝛼|2 + |𝛽|2 = 1. States can be represented by column complex

vectors as follows: |𝜓⟩ =

(︃
𝛼

𝛽

)︃
= 𝛼 |0⟩+ 𝛽 |1⟩, where {|0⟩ , |1⟩} forms an orthonormal basis

of the two-dimensional complex vector space.
The basis {|0⟩ , |1⟩} is called as the standard basis. Besides, there are some other orthonormal

bases studied in the literature, such as diagonal (or dual, or Hadamard) basis consisting of the
following vectors:

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩)

The evolution of a closed quantum system can be performed by a unitary transformation.
If the state of a qubit is represented by a column vector, then a unitary transformation 𝑈 can
be represented by a complex-value matrix such that 𝑈𝑈 † = 𝑈 †𝑈 = 𝐼 or 𝑈 † = 𝑈−1, where
𝑈 † is the conjugate transpose of 𝑈 . 𝑈 acts on the Hilbert space ℋ transforming a state |𝜓⟩
to a state |𝜓′⟩ by a matrix multiplication such that |𝜓′⟩ = 𝑈 |𝜓⟩. There are some frequently
used quantum gates in applications: the Hadamard gate 𝐻 , the identity gate 𝐼 , the Pauli gates
𝑋 , 𝑌 , and 𝑍 , and the controlled-NOT gate CX . Note that the CX gate performs on two
qubits, while the remaining gates perform on a single qubit. Their matrix representations are as
follows:

𝐼2 =

(︃
1 0

0 1

)︃
, 𝑋 =

(︃
0 1

1 0

)︃
, 𝑌 =

(︃
0 −𝑖
𝑖 0

)︃
,

𝑍 =

(︃
1 0

0 −1

)︃
, 𝐻 = 1√

2

(︃
1 1

1 −1

)︃
, 𝐶𝑋 =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎠.

where 𝑖 is the imaginary unit. For example, the Hadamard gate on a single qubit performs the
mapping |0⟩ ↦→ 1√

2
(|0⟩+ |1⟩) and |1⟩ ↦→ 1√

2
(|0⟩ − |1⟩). The controlled-NOT gate on pairs of

qubits performs the mapping |00⟩ ↦→ |00⟩ , |01⟩ ↦→ |01⟩ , |10⟩ ↦→ |11⟩ , |11⟩ ↦→ |10⟩, which
can be understood as inverting the second qubit (referred to as the target) if and only if the first
qubit (referred to as the control) is one.

For multiple qubits, we use the tensor product of Hilbert spaces. Let ℋ1 and ℋ2 be two
Hilbert spaces. Their tensor product ℋ1 ⊗ℋ2 is defined as a vector space consisting of linear
combinations of the vectors |𝜓1𝜓2⟩ = |𝜓1⟩ |𝜓2⟩ = |𝜓1⟩⊗|𝜓2⟩, where |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈ ℋ2.
Systems of two or more qubits may be in entangled states, meaning that states of qubits are
correlated and inseparable. Entanglement shows that an entangled state of two qubits cannot
be expressed as a tensor product of single-qubit states. We can use 𝐻 and CX gates to create
entangled states as follows: 𝐶𝑋((𝐻 ⊗ 𝐼) |00⟩) = 1√

2
(|00⟩+ |11⟩).



Let |𝜓⟩ be a quantum state and 𝜃 ∈ [0, 2𝜋). In quantum mechanics, the state 𝑒𝑖𝜃 |𝜓⟩ is
considered to be physically equal to |𝜓⟩ with respect to the global phase factor 𝑒𝑖𝜃. From an
observable perspective, two states are undistinguishable if they differ only by a global phase.
We can use density matrices |𝜓⟩⟨𝜓| to present quantum states |𝜓⟩ from which we can eliminate
the global phase factor as follows: 𝑒𝑖𝜃 |𝜓⟩ (𝑒𝑖𝜃 |𝜓⟩)† = 𝑒𝑖𝜃 |𝜓⟩ 𝑒−𝑖𝜃 ⟨𝜓| = |𝜓⟩⟨𝜓|.

3. Equivalence Checking of Quantum Circuits

This section presents the theoretical foundation of equivalence checking of quantum circuits by
introducing a theorem based on which an algorithm is constructed.

3.1. Theoretical Foundation

We propose a method for checking the equivalence of quantum circuits constructed from
quantum gates based on their functionality. We suppose that quantum circuits operate on
quantum states in a Hilbert space ℋ with 𝑛 qubits. The unitary evolution of quantum systems
is described by unitary matrices whose size is 2𝑛 × 2𝑛. We first define the equivalence checking
problem of quantum circuits.

Definition 3.1 (Equivalence checking problem). Given two quantum circuits represented by
unitary matrices, 𝑈 = 𝑈𝑚 . . . 𝑈0 and 𝑈 ′ = 𝑈 ′

𝑚′ . . . 𝑈 ′
0, the equivalence checking problem of 𝑈

and 𝑈 ′ is asked to check whether 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋).

We call 𝑒𝑖𝜃 a global phase that is physically unobservable [11]. In quantum mechanics,
quantum states that differ only by a global phase are physically indistinguishable and equivalent
under observation [11]. Hence, we define observable equivalence for quantum states as follows:

Definition 3.2 (Observable equivalence for quantum states). |𝜓⟩ ≈ |𝜓′⟩ (or |𝜓⟩ ≈𝜃 |𝜓′⟩ to
make it clear from the context) is defined as |𝜓⟩ = 𝑒𝑖𝜃 |𝜓′⟩ for some 𝜃 ∈ [0, 2𝜋).

To check |𝜓⟩ ≈ |𝜓′⟩, we can check the equality of their density matrices |𝜓⟩⟨𝜓| and |𝜓′⟩⟨𝜓′|.
Because using density matrices to represent quantum states can eliminate the global phase, it is
a handy trick to check the observable equivalence of two quantum states by comparing their
density matrices. This result is derived from the following lemma.

Lemma 3.1. |𝜓⟩ ≈ |𝜓′⟩ if and only if |𝜓⟩⟨𝜓| = |𝜓′⟩⟨𝜓′|.

Proof. For the ‘only if ’ part (the ⇒ direction), it is straightforward.
We now consider the ‘if ’ part (the ⇐ direction). Let {|𝜑0⟩ , . . . , |𝜑𝑖⟩ , . . . |𝜑2𝑛−1⟩} be an

orthonormal basis of ℋ with 𝑛 dimension. There exists 𝑐0, . . . , 𝑐𝑖, . . . , 𝑐2𝑛−1 such that |𝜓⟩ =
𝑐0 |𝜑0⟩+ · · ·+𝑐𝑖 |𝜑𝑖⟩+ · · ·+𝑐2𝑛−1 |𝜑2𝑛−1⟩ and |𝑐0|2+ · · ·+ |𝑐𝑖|2+ · · ·+ |𝑐2𝑛−1|2 = 1. Similarly,
we have |𝜓′⟩ = 𝑐′0 |𝜑0⟩+ · · ·+ 𝑐′𝑖 |𝜑𝑖⟩+ · · ·+ 𝑐′2𝑛−1 |𝜑2𝑛−1⟩. Let A and A’ be 2𝑛 × 2𝑛 matrices
denoting |𝜓⟩⟨𝜓| and |𝜓′⟩⟨𝜓′|, respectively. The elements of matrix A are calculated as follows:

𝑎𝑖𝑗 = ⟨𝜑𝑖|𝐴 |𝜑𝑗⟩
= ⟨𝜑𝑖|𝜓⟩ ⟨𝜓|𝜑𝑗⟩



= 𝑐𝑖𝑐
*
𝑗

Similarly, the elements of matrix A’ are calculated as follows: 𝑎′𝑖𝑗 = 𝑐′𝑖𝑐
′*
𝑗 .

We have 𝑎𝑖𝑗 = 𝑎′𝑖𝑗 for any 𝑖, 𝑗 ∈ [0 . . . 2𝑛 − 1] because of A = A’ from the assumption. Let us
consider 𝑎𝑖𝑖 = 𝑎′𝑖𝑖 as follows:

𝑎𝑖𝑖 = 𝑎′𝑖𝑖

⇔ 𝑐𝑖𝑐
*
𝑖 = 𝑐′𝑖𝑐

′*
𝑖

⇔ 𝑟𝑒𝑖𝛼(𝑟.𝑒𝑖𝛼)* = 𝑟′𝑒𝑖𝛼
′
(𝑟′𝑒𝑖𝛼

′
)* (by the exponential form of complex numbers)

⇔ 𝑟 = 𝑟′ (because r and r’ are non-negative numbers)

We have 𝑐𝑖 = 𝑟𝑒𝑖𝛼, 𝑐′𝑖 = 𝑟′𝑒𝑖𝛼
′
, and 𝑟 = 𝑟′, where 𝑖 ∈ [0 . . . 2𝑛 − 1]. Let us consider two cases:

• If 𝑟 = 𝑟′ = 0, then it is immediate that 𝑐𝑖 = 𝑒𝑖𝜃𝑖𝑐′𝑖 for some 𝜃𝑖 ∈ [0, 2𝜋).

• If 𝑟 = 𝑟′ ̸= 0, then we have 𝑐𝑖
𝑐′𝑖

= 𝑟𝑒𝑖𝛼

𝑟′𝑒𝑖𝛼′ = 𝑒𝑖(𝛼−𝛼′) = 𝑒𝑖𝜃𝑖 , where 𝜃𝑖 = 𝛼− 𝛼′. Then, we

have 𝑐𝑖 = 𝑒𝑖𝜃𝑖𝑐′𝑖 for some 𝜃𝑖 ∈ [0, 2𝜋).

Therefore, for all 𝑖 ∈ [0 . . . 2𝑛 − 1], there exists 𝜃𝑖 ∈ [0, 2𝜋) such that 𝑐𝑖 = 𝑒𝑖𝜃𝑖𝑐′𝑖. Now let us
consider 𝑎𝑖𝑗 = 𝑎′𝑖𝑗 as follows:

𝑎𝑖𝑗 = 𝑎′𝑖𝑗

⇔ 𝑐𝑖𝑐
*
𝑗 = 𝑐′𝑖𝑐

′*
𝑗

⇔ 𝑒𝑖𝜃𝑖𝑐′𝑖(𝑒
𝑖𝜃𝑗𝑐′𝑗)

* = 𝑐′𝑖𝑐
′*
𝑗 (by the result above)

⇔ 𝑒𝑖(𝜃𝑖−𝜃𝑗)𝑐′𝑖𝑐
′*
𝑗 = 𝑐′𝑖𝑐

′*
𝑗

Therefore, we have 𝜃𝑖 = 𝜃𝑗 for any 𝑐𝑖, 𝑐𝑗 ̸= 0. It indicates that |𝜓⟩ = 𝑒𝑖𝜃 |𝜓′⟩ for some
𝜃 ∈ [0, 2𝜋). From Definition 3.2, we have |𝜓⟩ ≈ |𝜓′⟩.

Recall to check the equivalence of quantum circuits 𝑈 and 𝑈 ′, we need to check whether
𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋). We can use the following lemma to solve this problem.

Lemma 3.2. Let 𝑈 and 𝑈 ′ be 2𝑛 × 2𝑛 unitary matrices, then 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋)
if and only if 𝑈 |𝜓⟩ ≈𝜃 𝑈

′ |𝜓⟩ for any vector |𝜓⟩ ∈ ℋ.

Proof. For the ‘only if ’ part (the ⇒ direction), for any |𝜓⟩, we have 𝑈 |𝜓⟩ = 𝑒𝑖𝜃𝑈 ′ |𝜓⟩ for some
𝜃 ∈ [0, 2𝜋) using the assumption. From Definition 3.2, we have 𝑒𝑖𝜃𝑈 ′ |𝜓⟩ ≈ 𝑈 ′ |𝜓⟩. Therefore,
𝑈 |𝜓⟩ ≈𝜃 𝑈

′ |𝜓⟩.
For the ‘if ’ part (the ⇐ direction), because 𝑈 |𝜓⟩ ≈𝜃 𝑈

′ |𝜓⟩ for any |𝜓⟩ from the assumption,
we have 𝑈 |𝜓⟩ = 𝑒𝑖𝜃𝑈 ′ |𝜓⟩ for some 𝜃 ∈ [0, 2𝜋). Therefore, 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋).



In Lemma 3.2, it is unfeasible to consider any vector |𝜓⟩ ∈ ℋ because there are infinite
vectors in ℋ. Therefore, we introduce the following lemma to help us check whether 𝑈 = 𝑒𝑖𝜃𝑈 ′

by considering only basis vectors in an orthonormal basis of ℋ. If the dimension of ℋ is 𝑛, we
need to consider at most 2𝑛 basis vectors with respect to the same global phase.

Lemma 3.3. Let 𝑈 and 𝑈 ′ be 2𝑛 × 2𝑛 matrices, then 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋) if and
only if 𝑈 |𝜑𝑖⟩ ≈𝜃 𝑈

′ |𝜑𝑖⟩ for each basis vector |𝜑𝑖⟩ in an orthonormal basis of ℋ.

Proof. The ‘only if ’ part (the ⇒ direction) is immediate from Lemma 3.2.
For the ‘if ’ part (the ⇐ direction), let {|𝜑0⟩ , . . . , |𝜑𝑖⟩ , . . . |𝜑2𝑛−1⟩} be an orthonormal basis of

ℋ with 𝑛 dimension. For each basis vector 𝜑𝑖, we have 𝑈 |𝜑𝑖⟩ ≈𝜃 𝑈
′ |𝜑𝑖⟩ from the assumption.

From Definition 3.2, we have 𝑈 |𝜑𝑖⟩ = 𝑒𝑖𝜃𝑈 ′ |𝜑𝑖⟩ for some 𝜃 ∈ [0, 2𝜋). Therefore, for any
complex number 𝑐𝑖, we have 𝑈𝑐𝑖 |𝜑𝑖⟩ = 𝑒𝑖𝜃𝑈 ′𝑐𝑖 |𝜑𝑖⟩ (1).

For arbitrary |𝜓⟩ ∈ ℋ, there exists 𝑐0, . . . , 𝑐𝑖, . . . , 𝑐2𝑛−1 such that |𝜓⟩ = 𝑐0 |𝜑0⟩ + · · · +
𝑐𝑖 |𝜑𝑖⟩ + · · · + 𝑐2𝑛−1 |𝜑2𝑛−1⟩ and |𝑐0|2 + · · · + |𝑐𝑖|2 + · · · + |𝑐2𝑛−1|2 = 1. Because of (1), we
have the following:

𝑈 |𝜓⟩ = 𝑈𝑐0 |𝜑0⟩+ · · ·+ 𝑈𝑐𝑖 |𝜑𝑖⟩+ · · ·+ 𝑈𝑐2𝑛−1 |𝜑2𝑛−1⟩
= 𝑒𝑖𝜃𝑈 ′𝑐0 |𝜑0⟩+ · · ·+ 𝑒𝑖𝜃𝑈 ′𝑐𝑖 |𝜑𝑖⟩+ · · ·+ 𝑒𝑖𝜃𝑈 ′𝑐2𝑛−1 |𝜑2𝑛−1⟩
= 𝑒𝑖𝜃𝑈 ′(𝑐0 |𝜑0⟩+ · · ·+ 𝑐𝑖 |𝜑𝑖⟩+ · · ·+ 𝑐2𝑛−1 |𝜑2𝑛−1⟩)
= 𝑒𝑖𝜃𝑈 ′ |𝜓⟩

for any |𝜓⟩ and 𝜃. It means that 𝑈 |𝜓⟩ ≈𝜃 𝑈
′ |𝜓⟩ for any vector |𝜓⟩. Therefore, 𝑈 = 𝑒𝑖𝜃𝑈 ′ by

Lemma 3.2.

Remark 3.1. Checking 𝑈 |𝜓𝑖⟩ ≈𝜃 𝑈
′ |𝜓𝑖⟩ is actually checking the observable equivalence of

the 𝑖-th column vector of 𝑈 and the 𝑖-th column vector of 𝑈 ′ with respect to the phase 𝜃.

Lemma 3.4. 𝑈 |𝜑𝑖⟩ ≈𝜃 𝑈
′ |𝜑𝑖⟩ for each basis vector |𝜑𝑖⟩ in an orthonormal basis of ℋ if and

only if 𝑈 |𝜑𝑖⟩ ≈ 𝑈 ′ |𝜑𝑖⟩ for each |𝜑𝑖⟩ and 𝑈 |𝜑𝑖⟩ (𝑈 |𝜑𝑗⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)† for each |𝜑𝑖⟩
and |𝜑𝑗⟩.

Proof. For the ‘only if ’ part (the ⇒ direction), we have 𝑈 |𝜑𝑖⟩ ≈ 𝑈 ′ |𝜑𝑖⟩ for each basis vector
|𝜑𝑖⟩ using the assumption. Moreover, we have 𝑈 |𝜑𝑖⟩ = 𝑒𝑖𝜃𝑈 ′ |𝜑𝑖⟩ and 𝑈 |𝜑𝑗⟩ = 𝑒𝑖𝜃𝑈 ′ |𝜑𝑗⟩ for
each |𝜑𝑖⟩ and |𝜑𝑗⟩. Therefore, 𝑈 |𝜑𝑖⟩ (𝑈 |𝜑𝑗⟩)† = 𝑒𝑖𝜃𝑈 ′ |𝜑𝑖⟩ (𝑒𝑖𝜃𝑈 ′ |𝜑𝑗⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)†

For the ‘if ’ part (the ⇐ direction), we have 𝑈 |𝜑𝑖⟩ = 𝑒𝑖𝜃𝑖𝑈 ′ |𝜑𝑖⟩ and 𝑈 |𝜑𝑗⟩ = 𝑒𝑖𝜃𝑗𝑈 ′ |𝜑𝑗⟩ for
each |𝜑𝑖⟩ and |𝜑𝑗⟩ using the first condition in the assumption. For the second condition in the
assumption, we have as follows:

𝑈 |𝜑𝑖⟩ (𝑈 |𝜑𝑗⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)†

⇔ 𝑒𝑖𝜃𝑖𝑈 ′ |𝜑𝑖⟩ (𝑒𝑖𝜃𝑗𝑈 ′ |𝜑𝑗⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)†

⇔ 𝑒𝑖(𝜃𝑖−𝜃𝑗)𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)†

Therefore, we have 𝜃𝑖 = 𝜃𝑗 for each |𝜑𝑖⟩ and |𝜑𝑗⟩. It indicates that 𝑈 |𝜑𝑖⟩ ≈𝜃 𝑈
′ |𝜑𝑖⟩ for each

basis vector |𝜑𝑖⟩.



Algorithm 1: Equivalence Checking of Quantum Circuits
input : 𝑛 – the dimension of a Hilbert space

𝑈 = 𝑈𝑚 . . . 𝑈0 and 𝑈 ′ = 𝑈 ′
𝑚′ . . . 𝑈 ′

0 – two quantum circuits
{|𝜑0⟩ , . . . , |𝜑2𝑛−1⟩} – an orthonormal basis of a Hilbert space ℋ
𝜃 ∈ [0, 2𝜋) – the phase

output :True (𝑈 = 𝑒𝑖𝜃𝑈 ′) or False (𝑈 ̸= 𝑒𝑖𝜃𝑈 ′)

1 forall |𝜑𝑖⟩ ∈ {|𝜑0⟩ , . . . , |𝜑2𝑛−1⟩} do
2 |𝑢𝑖⟩ = 𝑈𝑚 · (. . . (𝑈0 · |𝜑𝑖⟩) . . . )
3 |𝑢′𝑖⟩ = 𝑈 ′

𝑚′ · (. . . (𝑈 ′
0 · |𝜑𝑖⟩) . . . )

4 if |𝑢𝑖⟩⟨𝑢𝑖| ≠ |𝑢′𝑖⟩⟨𝑢′𝑖| then
5 return False
6 if 𝑖 ̸= 0 ∧ |𝑢0⟩⟨𝑢𝑖| ≠ |𝑢′0⟩⟨𝑢′𝑖| then
7 return False
8 return True

Based on Lemma 3.1, Lemma 3.3 and Lemma 3.4, we introduce the following theorem to
check whether 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋).

Theorem 3.5. Let 𝑈 and 𝑈 ′ be 2𝑛 × 2𝑛 matrices, then 𝑈 = 𝑒𝑖𝜃𝑈 ′ for some 𝜃 ∈ [0, 2𝜋) if
and only if 𝑈 |𝜑𝑖⟩ (𝑈 |𝜑𝑖⟩)† = 𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑖⟩)† for each basis vector 𝜑𝑖 and 𝑈 |𝜑𝑖⟩ (𝑈 |𝜑𝑗⟩)† =
𝑈 ′ |𝜑𝑖⟩ (𝑈 ′ |𝜑𝑗⟩)† for each |𝜑𝑖⟩ and |𝜑𝑗⟩ in an orthonormal basis of ℋ.

Proof. It is immediate from Lemma 3.1, Lemma 3.3 and Lemma 3.4.

It is extremely expensive to calculate matrix-matrix multiplications 𝑈𝑚 . . . 𝑈0 and 𝑈 ′
𝑚′ . . . 𝑈 ′

0

to obtain 𝑈 and 𝑈 ′ and subsequently multiple with each |𝜑𝑖⟩ and |𝜑𝑗⟩ in Theorem 3.5 because
of the exponential size of unitary matrices. Instead, we can perform a series of matrix-vector
multiplications between unitary matrices and vectors in sequence as follows:⃒⃒

𝑢0𝑖
⟩︀
= 𝑈0 |𝜑𝑖⟩ ,

⃒⃒
𝑢1𝑖
⟩︀
= 𝑈1

⃒⃒
𝑢0𝑖
⟩︀
, . . . , |𝑢𝑚𝑖 ⟩ = 𝑈𝑚 · 𝑢𝑚−1

𝑖

The 𝑖-th column vector of matrix 𝑈 is |𝑢𝑖⟩ (i.e., |𝑢𝑚𝑖 ⟩) and similarly for the 𝑖-th column vector
|𝑢′𝑖⟩ of matrix 𝑈 ′. We are now ready to check whether |𝑢𝑖⟩⟨𝑢𝑖| is equal to |𝑢′𝑖⟩⟨𝑢′𝑖| for the first
condition in Theorem 3.5. Moreover, for the second condition in Theorem 3.5, it suffices to fix
|𝑢𝑖⟩ and |𝑢′𝑖⟩, and check whether |𝑢𝑖⟩⟨𝑢𝑗 | =

⃒⃒⃒
𝑢′𝑖

⟩⟨
𝑢′𝑗

⃒⃒⃒
for all 𝑗 ̸= 𝑖. This is an efficient way to

handle the calculation in Theorem 3.5.

3.2. Algorithm for Equivalence Checking of Quantum Circuits

An algorithm for equivalence checking of quantum circuits can be constructed based on
Theorem 3.5, which is shown as Algorithm 1. Given two quantum circuits in the form of
𝑈 = 𝑈𝑚 . . . 𝑈0 and 𝑈 ′ = 𝑈 ′

𝑚′ . . . 𝑈 ′
0, and an orthonormal basis {|𝜑0⟩ , . . . , |𝜑2𝑛−1⟩}, for each

basis vector 𝜑𝑖, we first construct the series of matrix-vector multiplications between unitary
matrices and vectors to obtain |𝑢𝑖⟩ and |𝑢′𝑖⟩ in the code fragment at lines 2–3. We then check



whether their corresponding density matrices |𝑢𝑖⟩⟨𝑢𝑖| and |𝑢′𝑖⟩⟨𝑢′𝑖| are equal for the first condi-
tion in Theorem 3.5 in the code fragment at lines 4–5. If this is not the case, False is returned.
Otherwise, we keep on checking for the second condition in Theorem 3.5 except for the case of
the basis vector |𝜑0⟩ in the code fragment at lines 6–7. If |𝑢0⟩⟨𝑢𝑖| is not equal to |𝑢′0⟩⟨𝑢′𝑖|, False
is returned. Otherwise, we move to check for other basis vectors. True is returned at the end
once all basis vectors have been checked.

4. Related Work

L. Burgholzer et al. [13] have proposed an advanced method for equivalence checking of
quantum circuits based on a decision diagram. Their approach involves two quantum circuits
𝑈 = 𝑈𝑚 . . . 𝑈0 and 𝑈 ′

𝑚′ . . . 𝑈 ′
0 as inputs and they check whether the two quantum circuits are

equivalent. They leverage two key observations: (1) quantum circuits are inherently reversible,
and (2) even small differences in quantum circuits may impact the overall behavior of quantum
circuits. Their strategy is as follows. For (2), they first randomly prepare some basis vectors 𝜑𝑖
and calculate the 𝑖-th column of each matrix𝑈 and𝑈 ′ to obtain |𝑢𝑖⟩ and |𝑢′𝑖⟩ as we do. They then
compare |𝑢𝑖⟩ and |𝑢′𝑖⟩ modulo the global phase by using the fidelity, denoted ℱ = | ⟨𝑢𝑖|𝑢′𝑖⟩ |2,
to measure the overlap between the two states. The two states are considered equivalent if
the fidelity between them is 1 up to a given tolerance 𝜀. This is an approximate estimation,
while we use their density matrices for the comparison, which provides an exact estimation.
After several runs, if they find |𝑢𝑖⟩ and |𝑢′𝑖⟩ that are not equivalent, the process is stopped.
Otherwise, they attempt to resolve 𝑈 ⇒ 𝐼 ⇐ 𝑈 ′ into the identity matrix 𝐼 based on (1) to
solve the equivalence checking problem. However, calculating 𝑈𝑖(𝑈

′
𝑖′)

† involves an expensive
matrix-matrix multiplication. Moreover, they seem not to consider the global phase in this
step. We have proven a theorem that it suffices to consider all basis vectors in an orthonormal
basis with the same global phase to conclude the equivalence checking problem. Our approach
considers the global phase and can be adopted by other approaches/tools for checking the
equivalence of quantum circuits.

5. Conclusion

We have presented a theoretical foundation for checking the equivalence of quantum circuits
based on which an algorithm is constructed. The equivalence checking process is simplified
to comparing each column vector of two unitary matrices, representing two quantum circuits,
modulo the same global phase. To eliminate the global phase during the comparison, we compare
their corresponding density matrices instead of their column vectors. To guarantee the same
global phase is used, we compare the outer products of two columns from each unitary matrix,
with one column fixed. We have proven a theorem to guarantee the correctness of our approach.
As one piece of future work, we would develop a support tool based on symbolic reasoning
in [14, 15] for our approach and conduct case studies to demonstrate the effectiveness of our
approach for equivalence checking of quantum circuits.
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