
A formal analysis of OpenPGP’s
post-quantum public-key algorithm extension

The 2nd International Workshop on Formal Analysis and
Verification of Post-Quantum Cryptographic Protocols

November 21, 2023

Duong Dinh Tran1, Kazuhiro Ogata1, and Santiago Escobar2

1Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
2VRAIN, Universitat Politècnica de València, Valencia, Spain

Overview
• OpenPGP
• A post-quantum extension of OpenPGP
• Maude tool
• Modeling PQ OpenPGP in Maude
• Formal analysis
• Summary

2

OpenPGP
OpenPGP is an open standard of PGP (Pretty Good Privacy), used for
encrypting and decrypting information.
When 𝐴 sends a message 𝑀 to 𝐵:

3

𝐵 decrypts the received message:

M H sign

skA

|| senc

k aenc pkB

|| C1 || C2
C2

C1

Sign ||M

Figure 1: OpenPGP: Sending a messageM

search [n,m] in MOD : t =>* p such that c .

where MOD is the name of the module specifying the state machine, and n and m are optional
arguments stating a bound on the number of desired solutions and the maximum depth of
the search, respectively. n typically is 1 and t typically represents an initial state of the state
machine.

3. OpenPGP’s post-quantum extension

We describe the OpenPGP protocol followed by its post-quantum extension.

OpenPGP and ECC in OpenPGP

The process that A (the sender) sends a messageM to B (the recipient) is shown in Figure 1,
which consists of the following sequence of steps:

1. The sender hashes the message (using the hash function H), and then signs the digest
with his/her private key (skA).

2. The sender randomly selects a key value k, which is served as a session key to encrypt the
message. Note that this session key is used for this message only, i.e., di�erent messages
use di�erent session keys. For the analysis, we suppose that the session key is unique
and non-guessable.

3. The sender asymmetrically encrypts (aenc) the session key with the recipient’s public
key (pkB), obtaining C1.

4. The sender concatenates the message’s signature and the message, and symmetrically
encrypts (senc) it under the session key k, obtaining C2 (|| denotes the concatenation).
The concatenation of C1 and C2 are outputted as the result.

The process shown in Figure 1 provides con�dentiality and integrity to the message being
sent. Depending on the sender’s desire, it may not be desirable to have both security services.
For instance, when integrity is not desirable, the sender will omit the signing part and proceed
to encrypt the message only. In this study, however, we always consider both con�dentiality
and integrity to be desirable.
Figure 2 depicts how the recipient decrypts the received ciphertext and validates it, which

consists of the following step sequence:

C1 || C2 adec
k

skB

sdec Sign ||M

H

verify

pkA

Figure 2: OpenPGP: Receiving an encrypted message

Sender private key
v

Recipient public key
R

Shared secret
S

Derived key
Z = KDF(S)

Session key
k

Encrypted session key
ECCC = senc(Z, k)

Output
C1 = V || ECCC

Figure 3: Session key encryption with ECDH

1. The recipient decrypts the �rst part of the ciphertext (C1) with his/her private key (skB)
to recover the session key k.

2. The recipient uses the session key to decrypt the second part of the ciphertext (C2),
obtaining a message and a signature.

3. The recipient hashes the message and uses the sender public key (pkA) to validate the
integrity of the message received.

When the ECDH key exchange method is used, instead of using the recipient’s public key
and private key to encrypt and decrypt the session key as shown in Figure 1 and Figure 2, a
so-called derived key is computed from the shared secret and that derived key is used to encrypt
the session key. The precise step sequence to encrypt the session key with ECDH is given in
Figure 3:

1. The sender �rst generates an ECDH ephemeral private/public key pair {v, V }.

2. The ECDH shared secret S is computed from v and the recipient public key R.

3. The sender then uses the key derivation function (KDF) to compute the derived key Z
from the shared secret.

private key of A
(RSA key)

session key
chosen by A

symmetric
encryption

asymmetric encryption

public key of B

decryptions

OpenPGP
• Elliptic Curve Cryptography (ECC) -based key exchange and signature replaced RSA

to keep the efficiency.

4

For example, ECDH is used to encrypt
the session key:

C1 || C2 adec
k

skB

sdec Sign ||M

H

verify

pkA

Figure 2: OpenPGP: Receiving an encrypted message

Sender private key
v

Recipient public key
R

Shared secret
S

Derived key
Z = KDF(S)

Session key
k

Encrypted session key
ECCC = senc(Z, k)

Output
C1 = V || ECCC

Figure 3: Session key encryption with ECDH

1. The recipient decrypts the �rst part of the ciphertext (C1) with his/her private key (skB)
to recover the session key k.

2. The recipient uses the session key to decrypt the second part of the ciphertext (C2),
obtaining a message and a signature.

3. The recipient hashes the message and uses the sender public key (pkA) to validate the
integrity of the message received.

When the ECDH key exchange method is used, instead of using the recipient’s public key
and private key to encrypt and decrypt the session key as shown in Figure 1 and Figure 2, a
so-called derived key is computed from the shared secret and that derived key is used to encrypt
the session key. The precise step sequence to encrypt the session key with ECDH is given in
Figure 3:

1. The sender �rst generates an ECDH ephemeral private/public key pair {v, V }.

2. The ECDH shared secret S is computed from v and the recipient public key R.

3. The sender then uses the key derivation function (KDF) to compute the derived key Z
from the shared secret.

• However, all of those public-key algorithms, RSA,
ECDH, and ECC-based digital signatures, are
threatened by quantum computers.

à A post-quantum extension for the OpenPGP
protocol has been proposed and being standardized.
https://datatracker.ietf.org/doc/draft-wussler-openpgp-pqc/02/

Key Encapsulation Mechanism (KEM)
A KEM is a tuple of algorithms (keygen, encaps, decaps):
1. (sk, pk) ← keygen(): outputs a public key pk and a secret key sk.

2. (K, C) ← encaps(pk): takes the public key pk, and outputs a ciphertext
C and a shared secret key K.

3. K ← decaps(sk, C): takes the secret key sk, a ciphertext C and outputs
the shared secret key K.

C

Alice Bob

(sk, pk) ← keygen() pk

(K, C) ← encaps(pk)

K ← decaps(sk, C)

5

Post-quantum extension of OpenPGP
• PQ OpenPGP uses:

1) ECDH in combination with CRYSTALS-Kyber, a post-quantum KEM,
2) ECC-based signature algorithm with CRYSTALS-Dilithium, a post-quantum digital signature.

1) Composite algorithm with ECDH and CRYSTALS-Kyber to encrypt a session key 𝑘:

6

M H ECC-sign

Dilithium-sign

DILskA

||

ECCskA

Sign ||M

Figure 4: Composite ECC-based signature scheme and CRYSTALS-Dilithium

ECDH private key
ECDHv

ECDH public key
ECDHR

Kyber public key
KBRpk

Kyber ciphertext & shared secret
(KBRC ,KBRS) Encaps(KBRpk)

ECDH shared secret
ECDHS

Key-Encryption-Key
KEK = KeyCombine(ECDHS ,ECDHV ,KBRS ,KBRC)

Session key
k

Encrypted session key
KC = senc(KEK, k)

Output
C1 = ECDHV ||KBRC ||KC

Figure 5: Composite ECDH and CRYSTALS-Kyber

4. The session key k is encrypted under the derived key.

5. Finally, the sender concatenates his/her ephemeral public key and the encrypted session
key, outputting the result.

Upon receiving the message, the recipient computes the shared secret from his/her ECDH
private key (the associated private key of R) and the sender public key V . The recipient then
derives Z , uses it to decrypt the session key, and uses the session key to decrypt the message as
well as validate the signature.

OpenPGP’s post-quantum extension

PQ OpenPGP makes use of two pairs of combinations: (1) an ECC-based signature algorithm in
combination with CRYSTALS-Dilithium, and (2) ECDH in combination with CRYSTALS-Kyber.

from sender from receiver from receiver

Maude
• A declarative language and high-performance tool.

• Can be used to formalize a system/protocol as a state machine.

• A functional module:

7

fmod M is

Σ

E

endfm

fmod SIMPLE-NAT is
sorts Zero NzNat Nat .
subsorts Zero NzNat < Nat .
op 0 : -> Zero [ctor] .
op s : Nat -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N N’ : Nat .
eq 0 + N = N .
eq s(N) + N’ = s(N + N’) .

endfm

signature

equation set

• A system module: we can also declare a rewrite rule (specify state transitions)

crl [label] : 𝑙 => 𝑟 if 𝑐1 /\ 𝑐2 /\

If the condition 𝑐1 /\ 𝑐2 /\ ... holds under some substitution 𝜎, 𝜎(𝑙) can be replaced with 𝜎(𝑟).

Modeling the protocol in Maude
1. Model cryptographic primitives used, such as ECDH, CRYSTALS-Kyber.

8

fmod ECDH is
--- public keys, private keys, shared secrets

sorts EdPubKey EdPriKey EdShareS .
--- derivation of the associated public key from a private key

op pk : EdPriKey -> EdPubKey .
--- computation of shared secret from a public and a private keys

op ss : EdPubKey EdPriKey -> EdShareS .
--- constructor of a shared secret is a private key pair

op _|_ : EdPriKey EdPriKey -> EdShareS [comm] .
vars SK SK2 : EdPriKey .
eq ss(pk(SK), SK2) = SK | SK2 .

endfm

2. Specify the protocol execution.
3. Specify the threat model.

Modeling CRYSTALS-Kyber
sorts KbPubKey KbPriKey KbShareS KbCipher .
--- KeyGen is a probabilistic algorithm ,

--- so keygen takes a private key as input and returns the public key

op keygen : KbPriKey -> KbPubKey .
--- similarly, Encaps is probabilistic, so an argument of KbPriKey is added

op encapsC : KbPubKey KbPriKey -> KbCipher . --- returns ciphertext

op encapsK : KbPubKey KbPriKey -> KbShareS . --- returns shared secret

op decaps : KbCipher KbPriKey -> KbShareS .
--- constructor of a shared secret is a private key pair

op _&_ : KbPriKey KbPriKey -> KbShareS .

vars SK SK2 : KbPriKey .
eq encapsK(keygen(SK), SK2) = (SK & SK2) .

eq decaps(encapsC(keygen(SK), SK2), SK) = (SK & SK2) .

9

Other primitives
--- generic sorts of all other sorts
sorts Data DataL .
--- some other sorts in ...
subsorts EdPubKey EdPriKey KbPubKey KbPriKey ... < Data .
subsort Data < DataL .
--- concatenation
op _||_ : DataL DataL -> DataL [assoc ctor id: nilDL] .
op h : DataL -> Data . --- hash function
...

10

Protocol execution

11

The protocol is modeled as a state machine, where each state is an AC-collection of name-value
pairs, i.e., observable components in Maude. Some observable components used are:

• (ecdh[A]: < PK ; SK >): User A has an ECDH public/private key pair PK and SK.

• (kyber[A]: < PK ; SK >): User A has a Kyber KEM public/private key pair PK and SK.

• (nw: MS): The network, i.e., collection of messages exchanged, is MS.

• (e-knl: (D1 ; D2 ; …)): The intruder’s knowledge is (D1 ; D2 ; …).

• ...

We define an initial state with the participation of two honest users together with a dishonest
user (the Dolev-Yao intruder).

Protocol execution: Encrypt and send a message

12

(e-knl: (pkes(skes1) ; pkdi(skdi1) ; pk(sked1) ; pk(sked2) ;
keygen(skkb1) ; pkes(skes3) ; skes3 ; pkdi(skdi3) ; skdi3 ;
pk(sked3) ; sked3 ; keygen(skkb3) ; skkb3))

(nw: empty) (ms: (m1 m2))
(used-kyber[b]: empty) (used-kyber[a]: empty)} .

a and b are the two honest users, while eve is the dishonest one. We suppose that b always be
the recipient, while a always be the sender, and so two key pairs of ECC-based and Dilithium
signatures are given to a. Initially, the intruder’s knowledge includes their own keys and all
other participants’ public keys.
Encryption and sending a message is modeled by the following rewrite rule:

crl [send] :
{(ms: (M MS)) (rd-sesskey: (K KS))
(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))
(ecdh[B] : (< PKED ; SKED > , SKS3)) (ecdh[A] : (< PKED2 ; SKED2 > , SKS4))
(kyber[B]: (< PKKB ; SKKB > , SKS5)) (kyber[A] : (< PKKB2 ; SKKB2 > , SKS6))
(nw: NW) (e-knl: DS) (used-kyber[A]: SKS7) OCs}

=> {(ms: MS) (rd-sesskey: KS)
(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))
(ecdh[B] : (< PKED ; SKED > , SKS3)) (ecdh[A] : (SKS4))
(kyber[B]: (< PKKB ; SKKB > , SKS5)) (kyber[A] : (SKS6))
(nw: (msg(A,B, PKED2 || KBC || KC || C2) NW))
(e-knl: (DS ; PKED2 ; KBC ; KC ; C2))
(used-kyber[A]: (SKS7 , < PKKB2 ; SKKB2 >)) OCs}

if H := h(M) /\
SIGN := ecSign(SKES,H) /\ SIGN2 := diSign(SKDI,H) /\
EDSS := ss(PKED,SKED2) /\ KBSS := encapsK(PKKB,SKKB2) /\
KBC := encapsC(PKKB,SKKB2) /\
KEK := kcombine(EDSS,PKED2,KBSS,KBC) /\
KC := senc(KEK, K) /\
C2 := senc(K, SIGN || SIGN2 || M) .

M is the raw message being sent. Sender A �rst hashes M, obtaining H, and then signs H with his
own ECC-based signature’s and Dilithium’s private keys, obtaining SIGN and SIGN2, respectively.
PKED and PKKB are the ECDH’s and Kyber’s public keys of recipient B, while SKED2 and SKKB2 are
the ECDH’s and Kyber’s ephemeral private keys of A. From these keys, A computes the two
shared secrets EDSS and KBSS as well as the Kyber ciphertext KBC. The key-encryption-key KEK

is then computed by the function kCombine (KeyCombine in Figure 5). A selects session key K,
encrypts it with the key-encryption-key, obtaining KC, and encrypts SIGN || SIGN2 || M with
K, obtaining C2. The encrypted message msg(A,B, PKED2 || KBC || KC || C2) is put into the
network in the successor state, namely, A sent that message to B. At the same time, the intruder
learns the message content (the message content is put into e-knl), A erases his ECDH’s and
Kyber’s ephemeral key pairs just used, and the Kyber’s ephemeral private key is put into A’s set
of Kyber’s ephemeral private keys used.

We suppose that the sender always deletes ECDH’s and Kyber’s ephemeral keys after sending
a message. In contrast, the recipient is not forced to do so. Typically, users are required to
periodically update the ephemeral keys. We de�ned two other rewrite rules modeling the

1. hash message
2. sign
3. compute shared secrets
4. compute KEM ciphertext
5. compute key encryption key
6. encrypt session key
7. final ciphertext

Threat model

13

We suppose the presence of an intruder with the following capabilities:

1) intercept any message sent in network to learn information in that message.

2) generate random components, such as, the session key.

3) apply any cryptographic primitive function to derive new information from the information
learned.

4) have access to quantum computers, so that can break the security of ECDH and ECC-based
signature schemes.

Intruder specification

crl [send] :
{(nw: NW)
(e-knl: DS)
... OCs}

=> {(nw: (msg(A,B, PKED2 || KBC || KC || C2) NW))
(e-knl: (DS ; PKED2 ; KBC ; KC ; C2))
... OCs}

14

1) intercept any message sent in network to learn information in that message.

public information

Intruder specification

--- (e-knl: (M ; DS)) says that M, a raw message, is in the intruder’s knowledge

--- intruder can hash M and learn the result, i.e., h(M)

rl [hash] :
{(e-knl : (M ; DS)) OCs} => {(e-knl : (M ; DS ; h(M))) OCs} .

--- intruder can compute Kyber KEM shared secret and encapsulation by Encaps

--- PKKB and SKKB are variables of Kyber public and private keys

crl [encaps] :
{(e-knl : (PKKB ; SKKB ; DS)) OCs}

=> {(e-knl : (PKKB ; SKKB ; DS ; encapsC(PKKB, SKKB) ; encapsK(PKKB, SKKB))) OCs}
if PKKB =/= keygen(SKKB) .

15

3) apply any cryptographic primitive function to derive new information from the information
learned.

Intruder specification

--- breaking ECDH, Eve can derive private keys from public keys

rl [break-ecdh] :
{(e-knl: (pk(SKED) ; DS)) OCs} => {(e-knl: (pk(SKED) ; DS ; SKED)) OCs} .

--- breaking ECC-based signature schemes

rl [break-ecc-sign] :
{(e-knl: (pkes(SKES) ; DS)) OCs} => {(e-knl: (pkes(SKES) ; DS ; SKES)) OCs} .

16

4) have access to quantum computers, so that can break the security of ECDH and ECC-based
signature schemes.

Analysis: Secrecy of messages

17

search [1,10] in PQOPENPGP : init =>*
{(ecsig[A] : (< PKES ; SKES > , SKS)) (dilit[A] : (< PKDI ; SKDI > , SKS2))
(ecdh[B] : (< PKED ; SKED > , SKS3)) (kyber[B]: (< PKKB ; SKKB > , SKS5))
(nw : (msg(A,B, PKED2 || KBC || KC || C2) NW))
(e-knl : (M ; DS)) OCs}

such that
(A =/= eve and B =/= eve) /\
EDSS := ss(PKED2, SKED) /\ KBSS := decaps(KBC, SKKB) /\
KEK := kcombine(EDSS, PKED2, KBSS, KBC) /\
K := sdec(KEK, KC) /\
SIGN || SIGN2 || M := sdec(K, C2) /\
ecVerify(PKES, SIGN, h(M)) /\ diVerify(PKDI, SIGN2, h(M)) .

Search a state with bounded depth 10 in which:
• there exists an encrypted message sent from A to B,
• B decrypts the raw message M and successfully verifies the composite signatures,
• M exists in Eve’s knowledge.

Maude did not find such a state after 1m39s, the protocol enjoys the property up to depth 10.

1. compute shared secrets

2. compute key encryption key

3. decrypt session key

4. decrypt the message

5. verify the two signatures

Analysis: experimental results

18

We also consider two other properties:
• Secrecy of ECDH shared secrets: Experiment shows that the intruder can learn such secrets.
• Authenticity of messages: if Bob decrypts an encrypted message apparently sent from Alice

and successfully verifies the composite signatures with Alice’s verifying keys, obtaining a raw
message 𝑀, then Alice indeed sent 𝑀 to Bob.

Property Depth Result Time (h:m:s) No. States

Secrecy of messages

8 ? 0:00:6.7 46317
9 ? 0:00:22.2 98943
10 ? 0:01:39 206972
11 ? 0:08:31 430750
12 ? 0:42:34 903344
13 ? 5:08:16 1929731

Authenticity of messages

8 ? 0:06:40 46317
9 ? 0:23:39 98943
10 ? 1:26:30 206972
11 ? 6:54:14 430750

Table 1
Experimental results. ? means that Maude did not find solution(s) for the given search command.

1. rule [send]: a encrypts and sends a message to b.

2. rule [break-ecdh]: eve derives the ECDH ephemeral private key of a from the public key.

3. rule [ss]: eve computes the ECDH shared secret from a’s private key just obtained and
b’s public key.

5.3. Authenticity of messages

This property states that if Bob successfully decrypts an encrypted message apparently sent from
Alice and successfully veri�es the composite signatures with Alice’s verifying keys, obtaining
a raw message M , then Alice indeed sent M to Bob. To check the property, we de�ne the
following search command:

search [1,10] in PQOPENPGP : init =>*
{(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))
(ecdh[B] : (< PKED ; SKED > , SKS3)) (kyber[B]: (< PKKB ; SKKB > , SKS5))
(e-knl: (PKED2 ; KBC ; KC ; C2 ; DS)) (nw: NW)
(used-kyber[A]: (< PKKB2 ; SKKB2 > , SKS6)) OCs}

such that
(A =/= eve and B =/= eve) /\
EDSS := ss(PKED2, SKED) /\ KBSS := decaps(KBC, SKKB) /\
KEK := kcombine(EDSS, PKED2, KBSS, KBC) /\
K := sdec(KEK, KC) /\
SIGN || SIGN2 || M := sdec(K, C2) /\
ecVerify(PKES, SIGN, h(M)) /\ diVerify(PKDI, SIGN2, h(M)) /\
not(msg(A,B, PKED2 || KBC || KC || C2) \in NW) /\
KBC == encapsC(PKKB, SKKB2) .

The command tries to �nd a state with bounded depth 10 such that:

(1) Eve knows four pieces of data PKED2, KBC, KC, and C2 (Eve can use these pieces of data
forming a message, and pretend A to send the message to B);

Summary

19

• We have presented a formal analysis of the OpenPGP’s post-quantum extension.
• The experimental results have confirmed that the protocol enjoys two properties:

secrecy of messages and authenticity of messages up to some specific depths.

Limitations:
• The number of the state space generated is huge. We were unable to proceed

with the experiments at deeper depths due to time limitations.

A possible future work:
• Verification based on interactive theorem proving.

Thank you for your attention!

Experiments: Time difference

21

With same depth, checking (1) is significantly faster than checking (2) mostly because:
In each state, there very huge number of substitutions for the following pattern in the
search command of (2):

(e-knl: (PKED2 ; KBC ; KC ; C2 ; DS))
where KC and C2 are variables of the sort Data, and so they can be substituted by any
terms of Data or its subsorts.
Note also that ; is AC, making the number of substitution solutions increase.

Property Depth Result Time (h:m:s) No. States

Secrecy of messages

8 ? 0:00:6.7 46317
9 ? 0:00:22.2 98943
10 ? 0:01:39 206972
11 ? 0:08:31 430750
12 ? 0:42:34 903344
13 ? 5:08:16 1929731

Authenticity of messages

8 ? 0:06:40 46317
9 ? 0:23:39 98943
10 ? 1:26:30 206972
11 ? 6:54:14 430750

Table 1
Experimental results. ? means that Maude did not find solution(s) for the given search command.

1. rule [send]: a encrypts and sends a message to b.

2. rule [break-ecdh]: eve derives the ECDH ephemeral private key of a from the public key.

3. rule [ss]: eve computes the ECDH shared secret from a’s private key just obtained and
b’s public key.

5.3. Authenticity of messages

This property states that if Bob successfully decrypts an encrypted message apparently sent from
Alice and successfully veri�es the composite signatures with Alice’s verifying keys, obtaining
a raw message M , then Alice indeed sent M to Bob. To check the property, we de�ne the
following search command:

search [1,10] in PQOPENPGP : init =>*
{(ecsig[A]: (< PKES ; SKES > , SKS)) (dilit[A]: (< PKDI ; SKDI > , SKS2))
(ecdh[B] : (< PKED ; SKED > , SKS3)) (kyber[B]: (< PKKB ; SKKB > , SKS5))
(e-knl: (PKED2 ; KBC ; KC ; C2 ; DS)) (nw: NW)
(used-kyber[A]: (< PKKB2 ; SKKB2 > , SKS6)) OCs}

such that
(A =/= eve and B =/= eve) /\
EDSS := ss(PKED2, SKED) /\ KBSS := decaps(KBC, SKKB) /\
KEK := kcombine(EDSS, PKED2, KBSS, KBC) /\
K := sdec(KEK, KC) /\
SIGN || SIGN2 || M := sdec(K, C2) /\
ecVerify(PKES, SIGN, h(M)) /\ diVerify(PKDI, SIGN2, h(M)) /\
not(msg(A,B, PKED2 || KBC || KC || C2) \in NW) /\
KBC == encapsC(PKKB, SKKB2) .

The command tries to �nd a state with bounded depth 10 such that:

(1) Eve knows four pieces of data PKED2, KBC, KC, and C2 (Eve can use these pieces of data
forming a message, and pretend A to send the message to B);

(1)

(2)

