Symbolic Model Checking Quantum Circuits With Density Operators in Maude

Canh Minh Do Kazuhiro Ogata

Japan Advanced Institute of Science and Technology, 1-8 Asahidai, Nomi, Japan

 $\label{eq:presented Physically at the 2^{nd}\ \mbox{International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols}$

November 21, 2023 - Brisbane, Australia

- 2 Basic Notations on Quantum Computation
- **3** Symbolic Reasoning
- 4 Symbolic Model Checking Quantum Circuits With Density Operators
- 5 Case Studies
- 6 Conclusions and Future Work

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

- Quantum computing is a rapidly emerging technology that uses the laws of quantum mechanics to solve complex problems beyond the capabilities of classical computers, such as Shore's fast algorithms¹ for discrete logarithms and factoring.
- Quantum circuits are a model of quantum computation used to design and implement quantum algorithms, programs, and protocols.
- Due to radically different principles of quantum mechanics, such as superposition, entanglement, and measurement, it is challenging to accurately design and implement quantum algorithms, quantum programs, and quantum protocols.
- Therefore, it is crucial to ensure the correctness of quantum circuits through verification.

¹P.W. Shor. "Algorithms for quantum computation: discrete logarithms and factoring". In: *Proceedings 35th Annual Symposium on Foundations of Computer Science*. 1994.

- We proposed a symbolic approach to model checking quantum circuits with a support tool implemented in Maude with pure states², but not mixed states.
- In many practical situations, a quantum system is not a single, well-defined state but a statistical mixture of multiple pure states (also called mixed states).
- This motivated us to extend our symbolic model checking quantum circuits to handle mixed states by using density operators.

²Canh Minh Do and Kazuhiro Ogata. "Symbolic Model Checking Quantum Circuits in Maude". In: The 35th International Conference on Software Engineering and Knowledge Engineering, SEKE 2023. 2023.

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

- A Hilbert space H usually serves as the state space of a quantum system that is a complex vector space equipped with an inner product such that each Cauchy sequence of vectors has a limit.
- An *n*-qubit system is the complex 2^n -space \mathbb{C}^{2^n} , where \mathbb{C} stands for the complex plane.
- Pure states in the *n*-qubit systems \mathbb{C}^{2^n} are unit vectors in 2^n -space \mathbb{C}^{2^n} .
- The orthogonal basis called computational basis in the one-qubit system \mathbb{C}^2 is the set $\{|0\rangle, |1\rangle\}$ that consists of the column vectors $|0\rangle = (1,0)^T$ and $|1\rangle = (0,1)^T$, where T denotes the transpose operator.
- In the two-qubit system C⁴, there are pure states that cannot be represented in the form |ψ₁⟩ ⊗ |ψ₂⟩ and called entangled states, where ⊗ denotes the tensor product (more precisely, the Kronecker product).
- For example, the EPR state (Einstein-Podolsky-Rosen state) $|EPR\rangle = (|00\rangle + |11\rangle)/\sqrt{(2)}$ is an entangled state, where $|00\rangle = |0\rangle \otimes |0\rangle$ and $|11\rangle = |1\rangle \otimes |1\rangle$.

Unitary Operators

- Quantum computation is represented by unitary operators (also called quantum gates).
- For example, the Hadamard gate *H* and Pauli gates *X*, *Y*, and *Z* are quantum gates on the one-qubit system C² and are defined as follows:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Two typical quantum gates on the two-qubit systems C⁴ are the controlled-X gate (also called the controlled-NOT gate) CX and the swap gate SWAP are defined by

$$egin{aligned} \mathcal{C} X &= |0
angle\!\langle 0|\otimes I + |1
angle\!\langle 1|\otimes X, \end{aligned} \\ \mathcal{S} \mathcal{W} A \mathcal{P} &= \mathcal{C} X (I\otimes |0
angle\!\langle 0| + X\otimes |1
angle\!\langle 1|)\mathcal{C} X, \end{aligned}$$

where I denotes the identity matrix of size 2×2 .

C.M. Do et al. (JAIST)

Measurement

- Measurement is a completely different process from applying quantum gates. Here we roughly explain specific projective measurements.
- For the general definition of projective measurement, see the famous textbook of quantum computation³.
- \blacksquare Observe that $P_0=|0\rangle\!\langle 0|$ and $P_1=|1\rangle\!\langle 1|$ are projectors, respectively.
- After executing the measurement $\{P_0, P_1\}$, a current state $|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle$ is collapsed into either $\frac{P_0|\psi\rangle}{|c_0|}$ with probability $|c_0|^2$ or into $\frac{P_1|\psi\rangle}{|c_1|}$ with probability $|c_1|^2$.

³Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.

	Pure States	Mixed States		
System information	Complete (a pure state $ \psi angle$)	Partial (an ensemble of pure states $\{(p_i, \psi_i angle)\})$		
State representation	$ \psi angle$	$ ho = \sum_i {m ho}_i \ket{\psi_i}\!ig\langle\psi_i $		
Unitary evolution	$\ket{\psi'} = oldsymbol{U} \ket{\psi}$	$ ho'=oldsymbol{U} hooldsymbol{U}^\dagger$		
Measurement $\{ M_m \}$	$m{p}(m{m}) = raket{\psi} m{M}_{m{m}}^{\dagger} m{M}_{m{m}} m{M}_{m{m}} m{\psi} \ rac{m{M}_{m{m}} m{\psi}}{\sqrt{m{p}(m{m})}}$	$egin{split} p(m) &= tr(oldsymbol{M}_m^\daggeroldsymbol{M}_m ho) \ ho' &= rac{oldsymbol{M}_m hooldsymbol{M}_m^\dagger}{P(m)} \end{split}$		

- The trace $tr(\mathbf{A})$ of operator \mathbf{A} is defined to be $tr(\mathbf{A}) = \sum_i \langle \phi_i | \mathbf{A} | \phi_i \rangle$ for some given orthonormal basis $\{ |\phi_i \rangle \}$.
- ρ is called a density operator or density matrix satisfying the trace condition $tr(\rho) = 1$.

Reduced Density Operators

The deepest application of the density operator is as a descriptive tool for sub-systems of a composite quantum system⁴.

Reduced Density Operators

Let A and B be two quantum systems whose state is described by a density operator ρ^{AB} . The **reduced density operator** for system A is defined by

$$\rho^{A} = tr_{B}(\rho^{AB})$$

where tr_B is the **partial trace** over system *B* that is defined by

 $tr_B(|a_1\rangle\!\langle a_2|\otimes |b_1\rangle\!\langle b_2|) = |a_1\rangle\!\langle a_2| tr(|b_1\rangle\!\langle b_2|) = |a_1\rangle\!\langle a_2| \langle b_2|b_1\rangle$

where $|a_1\rangle$ and $|a_2\rangle$ are any two vectors in the state space of A, and $|b_1\rangle$ and $|b_2\rangle$ are any two vectors in the state space of B.

⁴Nielsen and Chuang, Quantum Computation and Quantum Information.

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

Terms are built from scalars and basic vectors with some constructors.

- *Scalars* are complex numbers with some operations supported, such as multiplication, fraction, addition, conjugation, absolute, power, and square root.
- Basic vectors are the computational basis written in Dirac notation as $|0\rangle$ and $|1\rangle$.
- Constructors for matrices consist of scalar multiplication of matrices ·, matrix product ×, matrix addition +, tensor product ⊗, and the conjugate transpose A[†] of a matrix A.

• We conventionally formalize some basic matrices B_i for $i \in [0..3]$ as follows:

$$oldsymbol{B}_0 = \ket{0} imes ra{0} \ket{, \quad oldsymbol{B}_1 = \ket{0} imes ra{1} \ket{, \quad oldsymbol{B}_2 = \ket{1} imes ra{0} \ket{, \quad oldsymbol{B}_3 = \ket{1} imes ra{1} \ket{}}$$

■ The X, Y, Z, H, and CX gates are then a linear combination of the matrices B_i as follows:

$$\begin{split} \boldsymbol{X} &= \boldsymbol{B}_1 + \boldsymbol{B}_2, \quad \boldsymbol{Y} = (-i) \cdot \boldsymbol{B}_1 + i \cdot \boldsymbol{B}_2, \quad \boldsymbol{Z} = \boldsymbol{B}_1 + (-1) \cdot \boldsymbol{B}_3, \\ \boldsymbol{H} &= \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_0 + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_1 + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_2 + (-\frac{1}{\sqrt{2}}) \cdot \boldsymbol{B}_3, \quad \boldsymbol{C} \boldsymbol{X} = \boldsymbol{B}_0 \otimes \boldsymbol{I}_2 + \boldsymbol{B}_3 \otimes \boldsymbol{X} \end{split}$$

Laws

No Law L1 $\langle 0|0\rangle = \langle 1|1\rangle = 1, \langle 1|1\rangle = \langle 0|1\rangle = 0$ L2 Associativity of \times + \otimes and Commutativity of + L3 $0 \cdot \boldsymbol{A}_{m \times n} = O_{m \times n}, \ c \cdot O = O, \ 1 \cdot \boldsymbol{A} = \boldsymbol{A}$ 14 $c \cdot (\boldsymbol{A} + \boldsymbol{B}) = c \cdot \boldsymbol{A} + c \cdot \boldsymbol{B}$ L5 $\mathbf{c}_1 \cdot \mathbf{A} + \mathbf{c}_2 \cdot \mathbf{A} = (\mathbf{c}_1 + \mathbf{c}_2) \cdot \mathbf{A}$ $c_1 \cdot (c_2 \cdot \boldsymbol{A}) = (c_1 \cdot c_2) \cdot \boldsymbol{A}$ L6 $(c_1 \cdot \boldsymbol{A}) \times (c_2 \cdot \boldsymbol{B}) = (c_1 \cdot c_2) \cdot (\boldsymbol{A} \times \boldsymbol{B})$ 17 L8 $\boldsymbol{A} \times (c \cdot \boldsymbol{B}) = (c \cdot \boldsymbol{A}) \times \boldsymbol{B} = c \cdot (\boldsymbol{A} \times \boldsymbol{B})$ $\mathbf{A} \otimes (\mathbf{c} \cdot \mathbf{B}) = (\mathbf{c} \cdot \mathbf{A}) \otimes \mathbf{B} = \mathbf{c} \cdot (\mathbf{A} \otimes \mathbf{B})$ 10 L10 $O_{m \times n} \times \boldsymbol{A}_{n \times n} = \boldsymbol{A}_{m \times n} \times O_{n \times n} = O_{m \times n}$ L11 $I_m \times A_{m \times n} = A_{m \times n} \times I_n = A_{m \times n}$ L12 A + O = O + A = OL13 $O_{m \times n} \otimes A_{n \times n} = A_{n \times n} \otimes O_{m \times n} = O_{m \times n}$ $14 \quad \mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$ L15 $(\mathbf{A} + \mathbf{B}) \times \mathbf{C} = \mathbf{A} \times \mathbf{C} + \mathbf{B} \times \mathbf{C}$ $L16 \quad (\boldsymbol{A} \otimes \boldsymbol{B}) \times (\boldsymbol{C} \otimes \boldsymbol{D}) = (\boldsymbol{A} \times \boldsymbol{C}) \otimes (\boldsymbol{B} \times \boldsymbol{D})$ $L17 \quad \mathbf{A} \otimes (\mathbf{B} + \mathbf{C}) = \mathbf{A} \otimes \mathbf{B} + \mathbf{A} \otimes \mathbf{C}$ L18 $(\mathbf{A} + \mathbf{B}) \otimes \mathbf{C} = \mathbf{A} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{C}$ L19 $(c \cdot A)^{\dagger} = c^* \cdot A^{\dagger}, (A \times B)^{\dagger} = B^{\dagger} \times A^{\dagger}$ L20 $(\mathbf{A} + \mathbf{B})^{\dagger} = \mathbf{A}^{\dagger} + \mathbf{B}^{\dagger}$. $(\mathbf{A} \otimes \mathbf{B})^{\dagger} = \mathbf{A}^{\dagger} \otimes \mathbf{B}^{\dagger}$ L21 $I_m^{\dagger} = I_m, O_{m \times n}^{\dagger} = O_{n \times m}, (A^{\dagger})^{\dagger} = A$ L22 $|0\rangle^{\dagger} = \langle 0|, \langle 0|^{\dagger} = |0\rangle, |1\rangle^{\dagger} = \langle 1|, \langle 1|^{\dagger} = |1\rangle$

$$\begin{split} \boldsymbol{H} & \times |0\rangle \\ &= \left(\frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{0} + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{1} + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{2} + \left(-\frac{1}{\sqrt{2}}\right) \cdot \boldsymbol{B}_{3}\right) \times |0\rangle \\ &= \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{0} \times |0\rangle + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{1} \times |0\rangle + \frac{1}{\sqrt{2}} \cdot \boldsymbol{B}_{2} \times |0\rangle \\ &+ \left(-\frac{1}{\sqrt{2}}\right) \cdot \boldsymbol{B}_{3} \times |0\rangle \\ &= \frac{1}{\sqrt{2}} \cdot |0\rangle \times \langle 0| \times |0\rangle + \frac{1}{\sqrt{2}} \cdot |0\rangle \times \langle 1| \times |0\rangle \\ &+ \frac{1}{\sqrt{2}} \cdot |1\rangle \times \langle 0| \times |0\rangle + \left(-\frac{1}{\sqrt{2}}\right) \cdot |1\rangle \times \langle 1| \times |0\rangle \\ &= \frac{1}{\sqrt{2}} \cdot |0\rangle + \frac{1}{\sqrt{2}} \cdot |1\rangle \end{split}$$

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

- Alice wants to send an arbitrary pure state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ to Bob.
- The no-cloning theorem states that we cannot make an extract copy of an unknown quantum state.
- Taking advantage of two classical bits and an entangled qubit pair, Alice can send the qubit $|\psi\rangle$ to Bob.

- A whole quantum state is formalized as a density operator representing a mixed state.
- Classical bits are formalized as a map from indices in circuits to Boolean values, where each entry is in the form of $(i \mapsto b)$, meaning that the value of the classical bit stored at c_i is b whose value is either 0 or 1.

Formalization of Quantum Circuits

A sequence of quantum gates, measurements, and conditional gates is formalized as a list of actions in which each action is one of the forms as follows:

- X(*i*) applies the X gate on qubit at index *i*,
- Y(i) applies the Y gate on qubit at index i,
- Z(*i*) applies the Z gate on qubit at index *i*,
- H(i) applies the H gate on qubit at index i,
- CX(i, j) applies the CX gate on qubits at indices i and j,
- CY(i, j) applies the CY gate on qubits at indices i and j,
- **CZ**(i, j) applies the CZ gate on qubits at indices *i* and *j*,
- SWAP(i, j) applies the SWAP gate on qubits at indices i and j,
- **CCX**(i, j, k) applies the CCX gate on qubits at indices i, j and k,
- **CCZ**(i, j, k) applies the CCX gate on qubits at indices i, j and k,
- **CSWAP**(i, j, k) applies the CSWAP gate on qubits at indices i, j and k,
- M(i) measures q_i with the computational basis,
- c[i] ==b? AL checks if c_i equals b, then a list AL of actions is executed.

We define a Kripke structure $K = \langle S, I, T, A, L \rangle$ to conduct model checking for quantum circuits. Our formalization can be used as a general framework to formally specify and verify quantum circuits as follows:

- S and T can be reused for any quantum circuit.
- *I* is required to specify initial states.
- A and L are required to specify some desired properties for quantum circuits.

Each state in S is expressed as $\{obs\}$, where obs is a soup of six distinct observable components as follows:

- (mState: ms) denotes the mixed quantum state ms.
- (#qubits: *n*) denotes the number of qubits *n*.
- (bits:bm) denotes the classical bits obtained from measurements and stored in a bit map bm.
- (prob: *p*) denotes the probability *p* at the current quantum state.
- (actions: *al*) denotes the action list *al*, guiding us on how the circuit works.
- (isEnd: b) denotes termination with Boolean flag b.

A Kripke Structure for Model Checking Quantum Circuits

The state transitions in T for quantum circuits are formalized as follows:

```
--- unitary evolution
crl [U] : {(mState: MS) (actions: (A AL)) (#qubits: N) OCs}
=> {(mState: MS') (actions: AL) (#qubits: N) OCs}
if isBasicAction(A) / MS' := unitary(MS, A, N).
--- measurement
crl [M0] : {(mState: MS) (actions: (M(N') AL)) (prob: Prob) (bits:
   BM) (#qubits: N) OCs}
=> {(mState: MS') (actions: AL) (prob: (Prob .* Prob')) (bits:
   insert(N', 0, BM)) (#qubits: N) OCs}
if {mState: MS', prob: Prob'} := measure(MS, N, PO, N') .
crl [M1] : {(mState: MS) (actions: (M(N') AL)) (prob: Prob) (bits:
   BM) (#qubits: N) OCs}
=> {(mState: MS') (actions: AL) (prob: (Prob .* Prob')) (bits:
   insert(N', 1, BM)) (#qubits: N) OCs}
if {mState: MS', prob: Prob'} := measure(MS, N, P1, N') .
```

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

Model Checking Quantum Teleporation

• The initial state for Quantum Teleportation (QT)

where ES represents $\{(a, |0>+b, |1>)(x) | 0>(x) | 0>, 1\}$, the two functions findN(_) and convert(_) are to calculate the number of qubits and the density operator of a mixed state from a given ensemble ES.

 $\blacksquare \ I_{QT} = \{\texttt{init}\}$

Model Checking Quantum Teleporation

- A_{QT} consists of an atomic proposition isSuccess
- L_{QT} is defined:
 - eq {(isEnd: true) (mState: MS) (prob: Prob) (#qubits: N) OCs} |=
 isSuccess
 - = Prob > 0 implies
 tr[1]((tr[0](MS, N)), N) == (I (x) I (x) (PSI x (PSI)^+)) .
 eq {0Cs} |= PROP = false [owise] .

where PSI is the input state of the protocol being transferred and the function tr[](,) works as the partial trace over a sub-system.

• $K_{QT} \models \texttt{True} \ \mathcal{U} \texttt{ isSuccess}$

modelCheck(init, True U isSuccess)

A Support Tool and Experimental Results

- A support tool implemented in Maude for handling mixed states is extended from our previous support tool for pure states⁵.
- The implementation is available at https://github.com/canhminhdo/QTC-Maude

Protocol	Qubits	States	Pure States		Mixed States	
FIOLOCOI			Rewrite Steps	Time	Rewrite Steps	Time
Superdense Coding	2	9	685	pprox 0ms	2,088	2ms
Quantum Teleportation	3	27	4,340	3ms	29,095	30ms
Quantum Secret Sharing	4	65	16,449	9ms	211,831	519ms
Entanglement Swapping	4	33	6,930	4ms	56,193	40ms

⁵Do and Ogata, "Symbolic Model Checking Quantum Circuits in Maude".

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

- We have extended our symbolic approach to handle mixed states using density operators and have developed a support tool in Maude.
- Several quantum communication protocols have been successfully verified using our approach/support tool.
- As one piece of future work, we would conduct more case studies in which the statistical mixture of multiple pure states is realistically presented.

Thank You!