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Introduction

Quantum computing is a rapidly emerging technology that uses the laws of quantum
mechanics to solve complex problems beyond the capabilities of classical computers, such
as Shore’s fast algorithms1 for discrete logarithms and factoring.
Quantum circuits are a model of quantum computation used to design and implement
quantum algorithms, programs, and protocols.
Due to radically different principles of quantum mechanics, such as superposition,
entanglement, and measurement, it is challenging to accurately design and implement
quantum algorithms, quantum programs, and quantum protocols.
Therefore, it is crucial to ensure the correctness of quantum circuits through verification.

1P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”. In: Proceedings 35th Annual Symposium on
Foundations of Computer Science. 1994.
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Model Checking Quantum Circuits

We proposed a symbolic approach to model checking quantum circuits with a support tool
implemented in Maude with pure states2, but not mixed states.
In many practical situations, a quantum system is not a single, well-defined state but a
statistical mixture of multiple pure states (also called mixed states).
This motivated us to extend our symbolic model checking quantum circuits to handle
mixed states by using density operators.

2Canh Minh Do and Kazuhiro Ogata. “Symbolic Model Checking Quantum Circuits in Maude”. In: The 35th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2023. 2023.
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Hilbert Spaces

A Hilbert space H usually serves as the state space of a quantum system that is a complex
vector space equipped with an inner product such that each Cauchy sequence of vectors
has a limit.
An n-qubit system is the complex 2n-space C2n , where C stands for the complex plane.
Pure states in the n-qubit systems C2n are unit vectors in 2n-space C2n .
The orthogonal basis called computational basis in the one-qubit system C2 is the set
{|0⟩ , |1⟩} that consists of the column vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T , where T

denotes the transpose operator.
In the two-qubit system C4, there are pure states that cannot be represented in the form
|ψ1⟩ ⊗ |ψ2⟩ and called entangled states, where ⊗ denotes the tensor product (more
precisely, the Kronecker product).
For example, the EPR state (Einstein-Podolsky-Rosen state) |EPR⟩ = (|00⟩+ |11⟩)/

√
(2)

is an entangled state, where |00⟩ = |0⟩ ⊗ |0⟩ and |11⟩ = |1⟩ ⊗ |1⟩.
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Unitary Operators

Quantum computation is represented by unitary operators (also called quantum gates).
For example, the Hadamard gate H and Pauli gates X , Y , and Z are quantum gates on
the one-qubit system C2 and are defined as follows:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two typical quantum gates on the two-qubit systems C4 are the controlled-X gate (also
called the controlled-NOT gate) CX and the swap gate SWAP are defined by

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X ,

SWAP = CX (I ⊗ |0⟩⟨0|+ X ⊗ |1⟩⟨1|)CX ,

where I denotes the identity matrix of size 2 × 2.
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Measurement

Measurement is a completely different process from applying quantum gates. Here we
roughly explain specific projective measurements.
For the general definition of projective measurement, see the famous textbook of quantum
computation3.
Observe that P0 = |0⟩⟨0| and P1 = |1⟩⟨1| are projectors, respectively.
After executing the measurement {P0,P1}, a current state |ψ⟩ = c0 |0⟩+ c1 |1⟩ is
collapsed into either P0|ψ⟩

|c0| with probability |c0|2 or into P1|ψ⟩
|c1| with probability |c1|2.

c0|0⟩
|c0| ≈ |0⟩

|ψ⟩

c1|1⟩
|c1| ≈ |1⟩

|c0|2

|c1|2

3Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010.

C.M. Do et al. (JAIST) Symbolic Model Checking Quantum Circuits November 21, 2023 9 / 30



Pure States vs Mixed States

Pure States Mixed States

System information Complete (a pure state |ψ⟩) Partial (an ensemble of pure states {(pi , |ψi ⟩)})
State representation |ψ⟩ ρ =

∑
i pi |ψi ⟩⟨ψi |

Unitary evolution |ψ′⟩ = U |ψ⟩ ρ′ = UρU†

Measurement {Mm} p(m) = ⟨ψ|M†
mMm |ψ⟩ p(m) = tr(M†

mMmρ)
Mm|ψ⟩√

p(m)
ρ′ = MmρM†

m
p(m)

The trace tr(A) of operator A is defined to be tr(A) =
∑

i ⟨ϕi |A|ϕi ⟩ for some given
orthonormal basis {|ϕi ⟩}.
ρ is called a density operator or density matrix satisfying the trace condition tr(ρ) = 1.
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Reduced Density Operators

The deepest application of the density operator is as a descriptive tool for sub-systems of a
composite quantum system4.

Reduced Density Operators

Let A and B be two quantum systems whose state is described by a density operator ρAB . The
reduced density operator for system A is defined by

ρA = trB(ρ
AB)

where trB is the partial trace over system B that is defined by

trB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2| tr(|b1⟩⟨b2|) = |a1⟩⟨a2| ⟨b2|b1⟩

where |a1⟩ and |a2⟩ are any two vectors in the state space of A, and |b1⟩ and |b2⟩ are any two
vectors in the state space of B .

4Nielsen and Chuang, Quantum Computation and Quantum Information.
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Terms

Terms are built from scalars and basic vectors with some constructors.
Scalars are complex numbers with some operations supported, such as multiplication,
fraction, addition, conjugation, absolute, power, and square root.
Basic vectors are the computational basis written in Dirac notation as |0⟩ and |1⟩.
Constructors for matrices consist of scalar multiplication of matrices ·, matrix product ×,
matrix addition +, tensor product ⊗, and the conjugate transpose A† of a matrix A.
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Terms

We conventionally formalize some basic matrices Bi for i ∈ [0..3] as follows:

B0 = |0⟩ × ⟨0| , B1 = |0⟩ × ⟨1| , B2 = |1⟩ × ⟨0| , B3 = |1⟩ × ⟨1|

The X , Y , Z , H , and CX gates are then a linear combination of the matrices Bi as
follows:

X = B1 + B2, Y = (−i) · B1 + i · B2, Z = B1 + (−1) · B3,

H =
1√
2
· B0 +

1√
2
· B1 +

1√
2
· B2 + (− 1√

2
) · B3, CX = B0 ⊗ I2 + B3 ⊗ X
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Laws
No. Law
L1 ⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨1|1⟩ = ⟨0|1⟩ = 0
L2 Associativity of ×,+,⊗ and Commutativity of +
L3 0 · Am×n = Om×n, c · O = O, 1 · A = A
L4 c · (A + B) = c · A + c · B
L5 c1 · A + c2 · A = (c1 + c2) · A
L6 c1 · (c2 · A) = (c1 · c2) · A
L7 (c1 · A)× (c2 · B) = (c1 · c2) · (A × B)
L8 A × (c · B) = (c · A)× B = c · (A × B)
L9 A ⊗ (c · B) = (c · A)⊗ B = c · (A ⊗ B)
L10 Om×n × An×p = Am×n × On×p = Om×p

L11 Im × Am×n = Am×n × In = Am×n

L12 A + O = O + A = O
L13 Om×n ⊗ Ap×q = Ap×q ⊗ Om×n = Omp×nq

L14 A × (B + C ) = A × B + A × C
L15 (A + B)× C = A × C + B × C
L16 (A ⊗ B)× (C ⊗ D) = (A × C )⊗ (B × D)
L17 A ⊗ (B + C ) = A ⊗ B + A ⊗ C
L18 (A + B)⊗ C = A ⊗ C + B ⊗ C
L19 (c · A)† = c∗ · A†, (A × B)† = B† × A†

L20 (A + B)† = A† + B†, (A ⊗ B)† = A† ⊗ B†

L21 Im† = Im,O
†
m×n = On×m, (A†)† = A

L22 |0⟩† = ⟨0| , ⟨0|† = |0⟩ , |1⟩† = ⟨1| , ⟨1|† = |1⟩

H × |0⟩
= ( 1√

2
·B0 +

1√
2
·B1 +

1√
2
·B2 + (− 1√

2
) ·B3)× |0⟩

= 1√
2
· B0 × |0⟩+ 1√

2
· B1 × |0⟩+ 1√

2
· B2 × |0⟩

+ (− 1√
2
) · B3 × |0⟩

= 1√
2
· |0⟩ × ⟨0| × |0⟩+ 1√

2
· |0⟩ × ⟨1| × |0⟩

+ 1√
2
· |1⟩ × ⟨0| × |0⟩+ (− 1√

2
) · |1⟩ × ⟨1| × |0⟩

= 1√
2
· |0⟩+ 1√

2
· |1⟩
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Quantum Teleportation

Alice wants to send an arbitrary pure
state |ψ⟩ = α |0⟩+ β |1⟩ to Bob.
The no-cloning theorem states that
we cannot make an extract copy of an
unknown quantum state.
Taking advantage of two classical bits
and an entangled qubit pair, Alice can
send the qubit |ψ⟩ to Bob.

<latexit sha1_base64="sjuQX9n+wrw1zLJxgGuxqxAPc1A=">AAACBnicbVDLSsNAFJ3UV62vqks3g0VwVRIp6rLoxmUF+8AmlMl00g6dTMLMjRBC9n6AW/0Ed+LW3/AL/A2nbRa29cCFwzn3cu89fiy4Btv+tkpr6xubW+Xtys7u3v5B9fCoo6NEUdamkYhUzyeaCS5ZGzgI1osVI6EvWNef3E797hNTmkfyAdKYeSEZSR5wSsBIj+6EQebGmueDas2u2zPgVeIUpIYKtAbVH3cY0SRkEqggWvcdOwYvIwo4FSyvuIlmMaETMmJ9QyUJmfay2cU5PjPKEAeRMiUBz9S/ExkJtU5D33SGBMZ62ZuK/3n9BIJrL+MyToBJOl8UJAJDhKfv4yFXjIJIDSFUcXMrpmOiCAUT0sKWeJxqTnVeMck4yzmsks5F3bmsN+4bteZNkVEZnaBTdI4cdIWa6A61UBtRJNELekVv1rP1bn1Yn/PWklXMHKMFWF+/NimaHw==</latexit>| i
<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

<latexit sha1_base64="L07yE/c8o2E0oeL5CeXUuGj/M7w=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9mZoVl2aMf4FU/wZt49UP8An/DSbIHk1jQUFR1093lxYIrbdvfVmltfWNzq7xd2dnd2z+oHh61VZRIhi0WiUh2PapQ8BBbmmuB3VgiDTyBHW9yN/U7TygVj8JHncboBnQUcp8zqo3U6U9QZ3Y+qNbsuj0DWSVOQWpQoDmo/vSHEUsCDDUTVKmeY8fazajUnAnMK/1EYUzZhI6wZ2hIA1RuNjs3J2dGGRI/kqZCTWbq34mMBkqlgWc6A6rHatmbiv95vUT7N27GwzjRGLL5Ij8RREdk+jsZcolMi9QQyiQ3txI2ppIybRJa2BKPU8WZyismGWc5h1XSvqg7V/XLh8ta47bIqAwncArn4MA1NOAemtACBhN4gVd4s56td+vD+py3lqxi5hgWYH39AmP/mIk=</latexit>|0i

H

H

X Z

Initialization Quantum Gates Measurements

Classically Controlled Quantum Gates

0

0

0x1

0x1

𝑞!

𝑞"

𝑞#

𝑐!

𝑐"
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Formalization of Quantum Circuits

A whole quantum state is formalized as a density operator representing a mixed state.
Classical bits are formalized as a map from indices in circuits to Boolean values, where
each entry is in the form of (i 7→ b), meaning that the value of the classical bit stored at
ci is b whose value is either 0 or 1.
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Formalization of Quantum Circuits

A sequence of quantum gates, measurements, and conditional gates is formalized as a list of
actions in which each action is one of the forms as follows:

X(i) applies the X gate on qubit at index i ,
Y(i) applies the Y gate on qubit at index i ,
Z(i) applies the Z gate on qubit at index i ,
H(i) applies the H gate on qubit at index i ,
CX(i , j) applies the CX gate on qubits at indices i and j ,
CY(i , j) applies the CY gate on qubits at indices i and j ,
CZ(i , j) applies the CZ gate on qubits at indices i and j ,
SWAP(i , j) applies the SWAP gate on qubits at indices i and j ,
CCX(i , j , k) applies the CCX gate on qubits at indices i , j and k ,
CCZ(i , j , k) applies the CCX gate on qubits at indices i , j and k ,
CSWAP(i , j , k) applies the CSWAP gate on qubits at indices i , j and k ,
M(i) measures qi with the computational basis,
c[i] ==b? AL checks if ci equals b, then a list AL of actions is executed.
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A Kripke Structure for Model Checking Quantum Circuits

We define a Kripke structure K = ⟨S , I ,T ,A, L⟩ to conduct model checking for quantum
circuits. Our formalization can be used as a general framework to formally specify and verify
quantum circuits as follows:

S and T can be reused for any quantum circuit.
I is required to specify initial states.
A and L are required to specify some desired properties for quantum circuits.
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A Kripke Structure for Model Checking Quantum Circuits

Each state in S is expressed as {obs}, where obs is a soup of six distinct observable
components as follows:

(mState:ms) denotes the mixed quantum state ms.
(#qubits:n) denotes the number of qubits n.
(bits:bm) denotes the classical bits obtained from measurements and stored in a bit
map bm.
(prob:p) denotes the probability p at the current quantum state.
(actions:al) denotes the action list al , guiding us on how the circuit works.
(isEnd:b) denotes termination with Boolean flag b.
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A Kripke Structure for Model Checking Quantum Circuits

The state transitions in T for quantum circuits are formalized as follows:

--- unitary evolution
crl [U] : {( mState: MS) (actions: (A AL)) (# qubits: N) OCs}
=> {( mState: MS ’) (actions: AL) (# qubits: N) OCs}
if isBasicAction(A) /\ MS’ := unitary(MS, A, N) .
--- measurement
crl [M0] : {( mState: MS) (actions: (M(N’) AL)) (prob: Prob) (bits:

BM) (# qubits: N) OCs}
=> {( mState: MS ’) (actions: AL) (prob: (Prob .* Prob ’)) (bits:

insert(N’, 0, BM)) (# qubits: N) OCs}
if {mState: MS ’, prob: Prob ’} := measure(MS, N, P0, N’) .
crl [M1] : {( mState: MS) (actions: (M(N’) AL)) (prob: Prob) (bits:

BM) (# qubits: N) OCs}
=> {( mState: MS ’) (actions: AL) (prob: (Prob .* Prob ’)) (bits:

insert(N’, 1, BM)) (# qubits: N) OCs}
if {mState: MS ’, prob: Prob ’} := measure(MS, N, P1, N’) .
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A Kripke Structure for Model Checking Quantum Circuits

--- conditional gates
rl [cif] : {( qstate: Q) (bits: ((N |-> N1),BM)) (actions: ((c[N] ==

N2 ? AL ’) AL)) OCs}
=> {( qstate: Q) (bits: ((N |-> N1), BM))

(actions: ((if (N1 == N2) then AL ’ else nil fi) AL)) OCs} .
--- termination
rl [end] : {( actions: nil) (isEnd: false) OCs}
=> {( actions: nil) (isEnd: true) OCs} .
--- to make T total
rl [stutter ]: {( isEnd: true) OCs} => {(isEnd: true) OCs} .
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Model Checking Quantum Teleporation

The initial state for Quantum Teleportation (QT)

init = {( isEnd: false)
(# qubits: findN(ES))
(mState: convert(ES)
(prob: 1)
(bits: empty)
(actions: H(1) CX(1, 2) CX(0, 1) H(0)

M(0) M(1)
c[1] == 1 ? X(2)
c[0] == 1 ? Z(2))}

where ES represents {(a.|0>+b.|1>)(x)|0>(x)|0>,1}, the two functions findN(_) and
convert(_) are to calculate the number of qubits and the density operator of a mixed
state from a given ensemble ES.
IQT = {init}
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Model Checking Quantum Teleporation

AQT consists of an atomic proposition isSuccess
LQT is defined:

eq {(isEnd: true) (mState: MS) (prob: Prob) (# qubits: N) OCs} |=
isSuccess

= Prob > 0 implies
tr[1](( tr[0](MS , N)), N) == (I (x) I (x) (PSI x (PSI)^+)) .

eq {OCs} |= PROP = false [owise] .

where PSI is the input state of the protocol being transferred and the function
tr[_](_,_) works as the partial trace over a sub-system.
KQT |= True U isSuccess

modelCheck(init , True U isSuccess)
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A Support Tool and Experimental Results

A support tool implemented in Maude for handling mixed states is extended from our
previous support tool for pure states5.
The implementation is available at https://github.com/canhminhdo/QTC-Maude

Protocol Qubits States Pure States Mixed States
Rewrite Steps Time Rewrite Steps Time

Superdense Coding 2 9 685 ≈ 0ms 2,088 2ms

Quantum Teleportation 3 27 4,340 3ms 29,095 30ms

Quantum Secret Sharing 4 65 16,449 9ms 211,831 519ms

Entanglement Swapping 4 33 6,930 4ms 56,193 40ms

5Do and Ogata, “Symbolic Model Checking Quantum Circuits in Maude”.

C.M. Do et al. (JAIST) Symbolic Model Checking Quantum Circuits November 21, 2023 27 / 30

https://github.com/canhminhdo/QTC-Maude


Contents

1 Introduction

2 Basic Notations on Quantum Computation

3 Symbolic Reasoning

4 Symbolic Model Checking Quantum Circuits With Density Operators

5 Case Studies

6 Conclusions and Future Work

C.M. Do et al. (JAIST) Symbolic Model Checking Quantum Circuits November 21, 2023 28 / 30



Conclusions and Future Work

We have extended our symbolic approach to handle mixed states using density operators
and have developed a support tool in Maude.
Several quantum communication protocols have been successfully verified using our
approach/support tool.
As one piece of future work, we would conduct more case studies in which the statistical
mixture of multiple pure states is realistically presented.
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Thank You!
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