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Word Problem

m The problem of deciding whether or not two given terms (words) of
algebras are equivalent is called the word problem for the algebras.

m The word problem for various kinds of lattices is one of the central
topics in lattice theory.

The word problem for free distributive lattices is

solvable [Takeuchi, 1969].

The word problem for free modular lattices with n < 3 generators is
solvable and that for free modular lattices with n > 4 generators is
unsolvable [Herrmann, 1983].

The word problem for free ortholattices is solvable [Bruns, 1976].

The word problem for free modular ortholattices with n < 2 generators
is solvable and that for general free modular ortholattices remains an
open problem [Roddy, 1989].

The word problem for free orthomodular lattices with n < 2 generators
is solvable and that for general free modular ortholattices remains an
open problem [Bruns and Harding, 2000].
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Background

m In this presentation, we focus on free orthomodular lattices because
is significant as the algebraic structure of Quantum Logic.

m Since 1936, the algebraic structure of quantum mechanics called
orthomodular lattices have attracted many logicians’
attention [Birkhoff and von Neumann, 1936].

m This is because the set of all closed subspaces (experimental
propositions [Birkhoff and von Neumann, 1936]) of a Hilbert space is an
orthomodular lattice [Rédei, 1998, Proposition 4.5].

m However, the word problem for free orthomodular lattices still remains
an open problem [Bruns and Harding, 2000].

m Instead of tackling this open problem, we try to implement a tool that
supports to check the equivalence of two terms in free orthomodular
lattices using Maude.
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Previous Studies

m There are two existing
programs [Megill and Pavici¢, 2001, Hycko, 2005] for checking the
equivalence of two terms in free orthomodular lattices.

m However, these programs cannot deal with terms that consist of three
or more free variables.

m This is because there are infinite normal forms in three or more free
generators, even though there are only 96 normal forms in the case of
two free generators.

m This limitation to some two free generators is fatal when proving
theorems expressed by three or more generators in orthomodular lattices.

m We overcome this limitation by incorporating the idea of reachability
analysis into a neither confluent nor terminating term rewriting system
for free orthomodular lattices.
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m The word problem is transformed into a reachability problem in the
term rewriting system by searching for the reachable state space from
an initial state.

m The reachability problem is conducted through a breadth-first search in
an incremental way, which does not strictly require the reachable state
space to be finite.

(However, the reachability analysis may not terminate in general.)

m Based on this idea, we implement a support tool in Maude, a rewriting
logic-based specification/programming language that can deal with
terms that consist of three or more free variables.
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m Our support tool consists of a formal specification of free orthomodular
lattices and an implementation of

the 96 normal forms of two generators and
a theorem describing when the distributive laws can be applied to check
the word problem for free orthomodular lattices.
m To demonstrate the effectiveness of our approach, we verify the validity
of some axioms with three free variables in several implication
algebras [Hardegree, 1981, Abbott, 1976, Chajda et al., 2001,
Georgacarakos, 1980].
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Theoretical Background
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Definition 1
A lattice is a triple (L, A, V) that consists of a non-empty set L and
functions A: L x L — L and V : L x L — L satisfying

(Associativity) p A (gA1)=(pAg)ArandpV (gVr)=(pVq)Vr,
(Commutativity) pAg=qgApand pVqg=qVp,

(Idempotency) pAp=pand pV p =p,

(Absorption) p A (pVq) =pand pV (pAq) = p.

Definition 2

A lattice (L, A, V) is said to be

m bounded if it has the least element (denoted by A) and the greatest
element (denoted by Y') under the partial order <.

m distributive if the distributive law holds:
pA(qVr)=({@AqgV(pAT)

for any p,q,7 € L.
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Definition 3
An ortholattice (also called an orthocomplemented lattice) is a bounded
lattice equipped with an orthocomplementation. An orthocomplementation
on a bounded lattice (L, A, V) is a function = : L — L such that

pA-p=Aand pV-p=Y,

-p =D,

~(pAg)=-pV-gand ~(pVgq)=-pA-g,

for any p,q € L. In particular, distributive ortholattices are called Boolean
lattices.

Definition 4
An orthomodular lattice is an ortholattice (L, A, V, —) satisfying the
orthomodular law:

pVqg=pV(=pA(pVa))),

for any p,q € L
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Definition 5
Let £, = (L1, A1, V1,1) and Lo = (La, A2, Va2, —2) be ortholatices. Then,
L1 X L9 = (Ll X LQ,/\,\/,—|)

defined by

(p1,p2) A (q1,92) = (P1 A1 q1, 1 N2 q2),
(p1,p2) V (q1,92) = (P1 V1 1,01 V2 ¢2),
=(p1,p2) = (—1p1, 2p2)

is an ortholattice and is called the direct product of £ and L.

Definition 6

Let C be a non-empty class of algebras. An algebra Fx € C is called a
free algebra in C generated by X, if Fix is generated by X C F'x and
every function V : X — A € C can be uniquely extended to a
homomorphism V:Fx — A.
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m We use two fundamental theorems for orthomodular lattices to
implement a support tool.

m The first fundamental theorem states that there are only 96 normal
forms in the free orthomodular lattice with two generators.

MO x 2% is isomorphic to the free orthomodular lattice with two
generators, where MO is a kind of lattice called the Chinese lantern, and
2% is a free Boolean lattice with two generators.

Proof: see [Beran, 1985, Theorem II.2.8].

pVqg q—p p—>q-pVq

" A YA N
N // pPAq pA—-q  —pAgTpATq
. ~\ L

Chinese lantern

Free Boolean lattice with two

generators p and ¢
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m The second fundamental theorem tells us when the distributive law can
be applied in orthomodular lattice.
(This is a new theorem proposed in this paper.)

Let (L, A, V, ) be an orthomodular lattice. Then, the following are
equivalent:

pA(@Vr)=(@Aq)V(PAT)

pA(-pVa)=pAg

Dually, the following are also equivalent:
pV(gATr)=mVaAPVrT);

pV(=pAgq)=pVyq.

Proof: see our paper.
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The Role of The Fundamental Theorems

m By Theorem 1, the word problem for free orthomodular lattices with
n < 2 generators is solvable. That is, there are only 96 normal forms
(the elements of MOy x 2% is 6 x 24 = 96.

m Note that if p and ¢ are normal forms, then —p, =q, p A q, and pV q are
also normal forms.

m By Theorem 2, some terms with three or more variables are simplified
using the distributive law under some condition.
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96 Normal Forms

(PAQ), (PA—q), (7PAQ), (mpA—q), (PAQ)V (PA—Q)), (PAQ)V (—pAQ)), (PAQ)V (—pA—q)), ((PA
=q)V(=pAQ)), ((=pA=q)V (pPA=q)), ((=pA=q)V (=pAQ)), ((PAQ)V (PA=9)V(=PAQ)), ((PAG)V (PA
=q)V (=pA=q)), (mpA=q)V (=pAg)V (pPAQ)), (mpA—q)V (mpAg)V (PA—q)), ((PAQ)V (PA—G)V
(=pAQV (=pA=q)), (PA(—pV A (—pV—q)), (PA(—pVQ)), (PA(=pV—q)), (mpAQ)V (PA(—pV
=q)A(=pVQ))), (=pA=q)V (PA(=pV O A(—pV—q))), (p), ((mpV O A(pV (—pAQ))), (mpV @) A(pV
(=pA=9))), (=pV=@) A (PV (=PAQ))), ((mpV—=q) A(pV (=pA=1))), ((mpV =) A(=pV @) A(pV (—pA
=q)V(—pAqg))), (pV(=pAQ)), (PV (=pA=9)), (mpV O A(PV (mpA—=9) V (=pAQ))), ((mpV-g) A(pV
(=pAQ)V (—pA—q))), (pV (~pAQ)V (mpA—q)), (gA (—gVP) A(=gV D)), (gA(—qVD)), (PA—q)V
(@A (—=gV—P)A(=qVD))), (gA(=gV—p)), (mpA=q)V (gA(—gVP) A(—gV—p))), (PV—g) AV (—gA
p))), (@), (pV=9)A(qV (=gA=D))), (mpV=a)A(gV(—=gAD))), ((mpV—=g)A(pV =) A(gV (—pA—q)V
(pA—9))), ((=pV—=9)A(qV(—gA—D))), (¢V(—gAD)), (BV—g)A(qV (—gA—p)V (=gAD))), (¢V (—gA
=p)), ((=pV=9)A(qV (=gAP)V (=gA=p))), (qV (=gAp)V (=g A=p)), (=gA(qV=p)A(qVp)), ((PA
qQ)V(=gA(gV—p)A(qVD))), (g (qVD)), (mpAq)V (—gA(qVp)A(gV—p))), (maA(qV—p)), (pV
A (=gV(gAp))), (PVAA(=pVa)A(=gV (pPAG)V (=pAQ))), ((mpVa) A(=gV (aAP))), (PVE)A(—gV
(gA=p))), (=), (mpV @) A(—qV (gA—D))), (PV @) A(—qV (gA—p)V(gAD))), (mqV (gAD)), ((—pV
DA (=qV(gA—p)V(gAD))), (mqV(gA—Dp)), (—qV(gA—p)V(gAD)), (mpA(PV—g)A(PV4)), ((PAG)V
(=pA(PV—9)A(PV1))), (PA=q)V (=PA(PV @) A(PV 1)), (mpA(PVQ)), (mpA(PV =), ((PVE A
(V= A(=pV (PAQV (PA—))), (PVYA(—pV (PAQ))), (PV=9) A(=pV (PAQ))), ((PVE) A(—pV
(PA=9))), (PV—g) A(—pV (PA—G))), (—p), ((PV O A(—pV (PA=g)V (PAG))), ((PV—g) A(—pV (PA
QV(pA—9))), (—pV(PAQ)), (mpV (PA=Q)), (mpV (PA—g)V (PAQ)), (PV G A (PV =) A(—pV ) A
(=pV—9)), (PVO APV =) A (=pVa)), (PVe A (PV=9)A(=pV—q)), (mpV=g) A(=pV @) A(pV
9)), (GpV=g) A(=pVa) A(pV—q)), ((PVa) APV —q)), (PVa) A(—pVQ)), ((mpVa) APV —q)), ((pV
DA (=pV—9)), ((m=pV—-g)A(pPV—9q)), ((mpV—q)A(=pV9)), (PVq), (PV—q), (—pVa), (—pV—q), (V).
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Case Studies
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Implication Algebra

m We apply the support tool to show that some axioms with three free
variables in several implication algebras [Abbott, 1976,
Georgacarakos, 1980, Hardegree, 1981, Chajda et al., 2001] are valid.
m Before that, we briefly explain what implication algebras are.
m In Boolean lattices, the only implication is p — ¢ = —p V q.
m However, in orthomodular lattices, there are distinct implications defined
as follows:

p~q=-pV(Aq), p—q=(pA-q) Vg

p=>q=(pAQV(pAq@)V(=pA=q).
m Implication algebra: algebra which only operator is the implication (and
A).
m Some implication algebras for orthomodular lattices have been proposed:
Quasi-implication algebra [Hardegree, 1981]
Ortho-implication algebra [Abbott, 1976]
Orthomodular implication algebra [Chajda et al., 2001]
Sasaki implication algebra [Georgacarakos, 1980]
Dishkant implication algebra [Georgacarakos, 1980]
@ Relevance implication algebra [Georgacarakos, 1980]
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Axioms in Implication Algebra

m The axiom (Q2) of quasi-implication algebra [Hardegree, 1981]:
(p~q)~ (p~r)=(a~p)~(a~7)
m The axiom (0O2) of ortho-implication algebra [Abbott, 1976]:
p—(g—p)—r)=p—r
m The axiom (O5) of orthomodular implication algebra [Chajda et al., 2001]:
((p—=aq)—q—r)—=(p—r)=Y
m The axiom (O6) of orthomodular implication algebra [Chajda et al., 2001]:
((((((((p— @) = @) = 1) = 1) = 7) = p) = p)—=T)—p) —p
=(p—=q)—=q) —r)—r
m The axiom (J4) of Sasaki implication algebra [Georgacarakos, 1980]:
P~ (P~ ((g~ ((g~r) ~ L))~ L))~ A)
=7 ((r ((p~ (P~ q) ~ L)) ~ L)) ~ A).
m The axiom (K5) of Dishkant implication algebra [Georgacarakos, 1980]:
((p—=aq)—q—r)—=r=@—((a—7)—7)—=(g—r)—7)
m The axiom (L6) of relevance implication algebra [Georgacarakos, 1980]:

(p>a)>q»r)=>r=@p—>(g>r)>1) > {g>r)—>71)
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Experimental Result

m The axioms are verified by our tool automatically.

m Our tool is publicly available at
https://github.com/canhminhdo/FOM.

Target Axiom Time
The axiom (Q2) in [Hardegree, 1981] 1,213ms
The axiom (02) in [Abbott, 1976] 736ms

The axiom (0O5) in [Chajda et al., 2001] 705ms

The axiom (06) in [Chajda et al., 2001] 716ms
The axiom (J4) in [Georgacarakos, 1980] 715ms
The axiom (K5) in [Georgacarakos, 1980] 723ms
The axiom (L6) in [Georgacarakos, 1980] | 6d:19h:40m
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Conclusion

m Using a reachability analysis, we have described how to develop the
support tool for checking the word problem with three or more
generators for free orthomodular lattices.

m The existing tools [Megill and Pavi¢i¢, 2001, Hycko, 2005] cannot deal
with terms that consist of three or more free variables.

m We have conducted some case studies with the support tool to verify
various complex axioms that existing tools cannot verify.
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