# Reachability Analysis of the Equivalence of Two Terms in Free Orthomodular Lattices 

Tsubasa Takagi ${ }^{1}$ Canh Minh Do ${ }^{2}$ Kazuhiro Ogata ${ }^{3}$<br>${ }^{1}$ Tokyo Institute of Technology<br>${ }^{2,3}$ Japan Advanced Institute of Science and Technology

November 21, 2023 - Brisbane, Australia

## Contents

## 1 Introduction

## 2 Theoretical Background

## 3 Case Studies

## 4 Conclusion

## Word Problem

- The problem of deciding whether or not two given terms (words) of algebras are equivalent is called the word problem for the algebras.
- The word problem for various kinds of lattices is one of the central topics in lattice theory.
- The word problem for free distributive lattices is solvable [Takeuchi, 1969].
- The word problem for free modular lattices with $n \leq 3$ generators is solvable and that for free modular lattices with $n \geq 4$ generators is unsolvable [Herrmann, 1983].
- The word problem for free ortholattices is solvable [Bruns, 1976].
- The word problem for free modular ortholattices with $n \leq 2$ generators is solvable and that for general free modular ortholattices remains an open problem [Roddy, 1989].
- The word problem for free orthomodular lattices with $n \leq 2$ generators is solvable and that for general free modular ortholattices remains an open problem [Bruns and Harding, 2000].


## Background

- In this presentation, we focus on free orthomodular lattices because is significant as the algebraic structure of Quantum Logic.
- Since 1936, the algebraic structure of quantum mechanics called orthomodular lattices have attracted many logicians' attention [Birkhoff and von Neumann, 1936].
■ This is because the set of all closed subspaces (experimental propositions [Birkhoff and von Neumann, 1936]) of a Hilbert space is an orthomodular lattice [Rédei, 1998, Proposition 4.5].
- However, the word problem for free orthomodular lattices still remains an open problem [Bruns and Harding, 2000].
■ Instead of tackling this open problem, we try to implement a tool that supports to check the equivalence of two terms in free orthomodular lattices using Maude.


## Previous Studies

- There are two existing programs [Megill and Pavičić, 2001, Hyčko, 2005] for checking the equivalence of two terms in free orthomodular lattices.
- However, these programs cannot deal with terms that consist of three or more free variables.
- This is because there are infinite normal forms in three or more free generators, even though there are only 96 normal forms in the case of two free generators.
- This limitation to some two free generators is fatal when proving theorems expressed by three or more generators in orthomodular lattices.
- We overcome this limitation by incorporating the idea of reachability analysis into a neither confluent nor terminating term rewriting system for free orthomodular lattices.


## Method

- The word problem is transformed into a reachability problem in the term rewriting system by searching for the reachable state space from an initial state.
- The reachability problem is conducted through a breadth-first search in an incremental way, which does not strictly require the reachable state space to be finite.
(However, the reachability analysis may not terminate in general.)
■ Based on this idea, we implement a support tool in Maude, a rewriting logic-based specification/programming language that can deal with terms that consist of three or more free variables.


## Result

- Our support tool consists of a formal specification of free orthomodular lattices and an implementation of
1 the 96 normal forms of two generators and
2 a theorem describing when the distributive laws can be applied to check the word problem for free orthomodular lattices.
- To demonstrate the effectiveness of our approach, we verify the validity of some axioms with three free variables in several implication algebras [Hardegree, 1981, Abbott, 1976, Chajda et al., 2001, Georgacarakos, 1980].


## Contents

## 1 Introduction

2 Theoretical Background

## 3 Case Studies

## 4 Conclusion

## Definition 1

A lattice is a triple $(L, \wedge, \vee)$ that consists of a non-empty set $L$ and functions $\wedge: L \times L \rightarrow L$ and $\vee: L \times L \rightarrow L$ satisfying
1 (Associativity) $p \wedge(q \wedge r)=(p \wedge q) \wedge r$ and $p \vee(q \vee r)=(p \vee q) \vee r$,
2 (Commutativity) $p \wedge q=q \wedge p$ and $p \vee q=q \vee p$,
3 (Idempotency) $p \wedge p=p$ and $p \vee p=p$,
4 (Absorption) $p \wedge(p \vee q)=p$ and $p \vee(p \wedge q)=p$.

## Definition 2

A lattice $(L, \wedge, \vee)$ is said to be
■ bounded if it has the least element (denoted by $\lambda$ ) and the greatest element (denoted by $\curlyvee$ ) under the partial order $\leq$.
■ distributive if the distributive law holds:

$$
p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)
$$

for any $p, q, r \in L$.

## Definition 3

An ortholattice (also called an orthocomplemented lattice) is a bounded lattice equipped with an orthocomplementation. An orthocomplementation on a bounded lattice $(L, \wedge, \vee)$ is a function $\neg: L \rightarrow L$ such that
$1 p \wedge \neg p=\curlywedge$ and $p \vee \neg p=\curlyvee$,
$2 \neg \neg p=p$,
$3 \neg(p \wedge q)=\neg p \vee \neg q$ and $\neg(p \vee q)=\neg p \wedge \neg q$,
for any $p, q \in L$. In particular, distributive ortholattices are called Boolean lattices.

## Definition 4

An orthomodular lattice is an ortholattice $(L, \wedge, \vee, \neg)$ satisfying the orthomodular law:

$$
p \vee q=p \vee(\neg p \wedge(p \vee q)),
$$

for any $p, q \in L$

## Definition 5

Let $\mathcal{L}_{1}=\left(L_{1}, \wedge_{1}, \vee_{1}, \neg_{1}\right)$ and $\mathcal{L}_{2}=\left(L_{2}, \wedge_{2}, \vee_{2}, \neg_{2}\right)$ be ortholatices. Then,

$$
\mathcal{L}_{1} \times \mathcal{L}_{2}=\left(L_{1} \times L_{2}, \wedge, \vee, \neg\right)
$$

defined by

$$
\begin{aligned}
\left(p_{1}, p_{2}\right) \wedge\left(q_{1}, q_{2}\right) & =\left(p_{1} \wedge_{1} q_{1}, q_{1} \wedge_{2} q_{2}\right), \\
\left(p_{1}, p_{2}\right) \vee\left(q_{1}, q_{2}\right) & =\left(p_{1} \vee_{1} q_{1}, q_{1} \vee_{2} q_{2}\right), \\
\neg\left(p_{1}, p_{2}\right) & =\left(\neg_{1} p_{1}, \neg_{2} p_{2}\right)
\end{aligned}
$$

is an ortholattice and is called the direct product of $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$.

## Definition 6

Let $\mathcal{C}$ be a non-empty class of algebras. An algebra $F_{X} \in \mathcal{C}$ is called a free algebra in $\mathcal{C}$ generated by $X$, if $F_{X}$ is generated by $X \subseteq F_{X}$ and every function $V: X \rightarrow A \in \mathcal{C}$ can be uniquely extended to a homomorphism $\widehat{V}: F_{X} \rightarrow A$.

- We use two fundamental theorems for orthomodular lattices to implement a support tool.
- The first fundamental theorem states that there are only 96 normal forms in the free orthomodular lattice with two generators.


## Theorem 1

$M O_{2} \times \mathbf{2}^{4}$ is isomorphic to the free orthomodular lattice with two generators, where $M O_{2}$ is a kind of lattice called the Chinese lantern, and $\mathbf{2}^{4}$ is a free Boolean lattice with two generators.

Proof: see [Beran, 1985, Theorem III.2.8].


Chinese lantern


Free Boolean lattice with two generators $p$ and $q$

- The second fundamental theorem tells us when the distributive law can be applied in orthomodular lattice.
(This is a new theorem proposed in this paper.)


## Theorem 2

Let $(L, \wedge, \vee, \neg)$ be an orthomodular lattice. Then, the following are equivalent:
$1 p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$;
$2 p \wedge(\neg p \vee q)=p \wedge q$.
Dually, the following are also equivalent:
$1 p \vee(q \wedge r)=(p \vee q) \wedge(p \vee r)$;
$2 p \vee(\neg p \wedge q)=p \vee q$.
Proof: see our paper.

## The Role of The Fundamental Theorems

■ By Theorem 1, the word problem for free orthomodular lattices with $n \leq 2$ generators is solvable. That is, there are only 96 normal forms (the elements of $M O_{2} \times \mathbf{2}^{4}$ is $6 \times 2^{4}=96$.

■ Note that if $p$ and $q$ are normal forms, then $\neg p, \neg q, p \wedge q$, and $p \vee q$ are also normal forms.

- By Theorem 2, some terms with three or more variables are simplified using the distributive law under some condition.


## 96 Normal Forms

$(p \wedge q),(p \wedge \neg q),(\neg p \wedge q),(\neg p \wedge \neg q),((p \wedge q) \vee(p \wedge \neg q)),((p \wedge q) \vee(\neg p \wedge q)),((p \wedge q) \vee(\neg p \wedge \neg q)),((p \wedge$ $\neg q) \vee(\neg p \wedge q)),((\neg p \wedge \neg q) \vee(p \wedge \neg q)),((\neg p \wedge \neg q) \vee(\neg p \wedge q)),((p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q)),((p \wedge q) \vee(p \wedge$ $\neg q) \vee(\neg p \wedge \neg q)),((\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge q)),((\neg p \wedge \neg q) \vee(\neg p \wedge q) \vee(p \wedge \neg q)),((p \wedge q) \vee(p \wedge \neg q) \vee$ $(\neg p \wedge q) \vee(\neg p \wedge \neg q)),(p \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q)),(p \wedge(\neg p \vee q)),(p \wedge(\neg p \vee \neg q)),((\neg p \wedge q) \vee(p \wedge(\neg p \vee$ $\neg q) \wedge(\neg p \vee q))),((\neg p \wedge \neg q) \vee(p \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q))),(p),((\neg p \vee q) \wedge(p \vee(\neg p \wedge q))),((\neg p \vee q) \wedge(p \vee$ $(\neg p \wedge \neg q))),((\neg p \vee \neg q) \wedge(p \vee(\neg p \wedge q))),((\neg p \vee \neg q) \wedge(p \vee(\neg p \wedge \neg q))),((\neg p \vee \neg q) \wedge(\neg p \vee q) \wedge(p \vee(\neg p \wedge$ $\neg q) \vee(\neg p \wedge q))),(p \vee(\neg p \wedge q)),(p \vee(\neg p \wedge \neg q)),((\neg p \vee q) \wedge(p \vee(\neg p \wedge \neg q) \vee(\neg p \wedge q))),((\neg p \vee \neg q) \wedge(p \vee$ $(\neg p \wedge q) \vee(\neg p \wedge \neg q))),(p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q)),(q \wedge(\neg q \vee p) \wedge(\neg q \vee \neg p)),(q \wedge(\neg q \vee p)),((p \wedge \neg q) \vee$ $(q \wedge(\neg q \vee \neg p) \wedge(\neg q \vee p))),(q \wedge(\neg q \vee \neg p)),((\neg p \wedge \neg q) \vee(q \wedge(\neg q \vee p) \wedge(\neg q \vee \neg p))),((p \vee \neg q) \wedge(q \vee(\neg q \wedge$ $p)),(q),((p \vee \neg q) \wedge(q \vee(\neg q \wedge \neg p))),((\neg p \vee \neg q) \wedge(q \vee(\neg q \wedge p))),((\neg p \vee \neg q) \wedge(p \vee \neg q) \wedge(q \vee(\neg p \wedge \neg q) \vee$ $(p \wedge \neg q))),((\neg p \vee \neg q) \wedge(q \vee(\neg q \wedge \neg p))),(q \vee(\neg q \wedge p)),((p \vee \neg q) \wedge(q \vee(\neg q \wedge \neg p) \vee(\neg q \wedge p))),(q \vee(\neg q \wedge$ $\neg p)),((\neg p \vee \neg q) \wedge(q \vee(\neg q \wedge p) \vee(\neg q \wedge \neg p))),(q \vee(\neg q \wedge p) \vee(\neg q \wedge \neg p)),(\neg q \wedge(q \vee \neg p) \wedge(q \vee p)),((p \wedge$ $q) \vee(\neg q \wedge(q \vee \neg p) \wedge(q \vee p))),(\neg q \wedge(q \vee p)),((\neg p \wedge q) \vee(\neg q \wedge(q \vee p) \wedge(q \vee \neg p))),(\neg q \wedge(q \vee \neg p)),((p \vee$ $q) \wedge(\neg q \vee(q \wedge p))),((p \vee q) \wedge(\neg p \vee q) \wedge(\neg q \vee(p \wedge q) \vee(\neg p \wedge q))),((\neg p \vee q) \wedge(\neg q \vee(q \wedge p))),((p \vee q) \wedge(\neg q \vee$ $(q \wedge \neg p))),(\neg q),((\neg p \vee q) \wedge(\neg q \vee(q \wedge \neg p))),((p \vee q) \wedge(\neg q \vee(q \wedge \neg p) \vee(q \wedge p))),(\neg q \vee(q \wedge p)),((\neg p \vee$ $q) \wedge(\neg q \vee(q \wedge \neg p) \vee(q \wedge p))),(\neg q \vee(q \wedge \neg p)),(\neg q \vee(q \wedge \neg p) \vee(q \wedge p)),(\neg p \wedge(p \vee \neg q) \wedge(p \vee q)),((p \wedge q) \vee$ $(\neg p \wedge(p \vee \neg q) \wedge(p \vee q))),((p \wedge \neg q) \vee(\neg p \wedge(p \vee q) \wedge(p \vee \neg q))),(\neg p \wedge(p \vee q)),(\neg p \wedge(p \vee \neg q)),((p \vee q) \wedge$ $(p \vee \neg q) \wedge(\neg p \vee(p \wedge q) \vee(p \wedge \neg q))),((p \vee q) \wedge(\neg p \vee(p \wedge q))),((p \vee \neg q) \wedge(\neg p \vee(p \wedge q))),((p \vee q) \wedge(\neg p \vee$ $(p \wedge \neg q))),((p \vee \neg q) \wedge(\neg p \vee(p \wedge \neg q))),(\neg p),((p \vee q) \wedge(\neg p \vee(p \wedge \neg q) \vee(p \wedge q))),((p \vee \neg q) \wedge(\neg p \vee(p \wedge$ $q) \vee(p \wedge \neg q))),(\neg p \vee(p \wedge q)),(\neg p \vee(p \wedge \neg q)),(\neg p \vee(p \wedge \neg q) \vee(p \wedge q)),((p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q) \wedge$ $(\neg p \vee \neg q)),((p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee q)),((p \vee q) \wedge(p \vee \neg q) \wedge(\neg p \vee \neg q)),((\neg p \vee \neg q) \wedge(\neg p \vee q) \wedge(p \vee$ $q)),((\neg p \vee \neg q) \wedge(\neg p \vee q) \wedge(p \vee \neg q)),((p \vee q) \wedge(p \vee \neg q)),((p \vee q) \wedge(\neg p \vee q)),((\neg p \vee q) \wedge(p \vee \neg q)),((p \vee$ $q) \wedge(\neg p \vee \neg q)),((\neg p \vee \neg q) \wedge(p \vee \neg q)),((\neg p \vee \neg q) \wedge(\neg p \vee q)),(p \vee q),(p \vee \neg q),(\neg p \vee q),(\neg p \vee \neg q),(\curlyvee)$.

## Contents

## 1 Introduction

## 2 Theoretical Background

3 Case Studies

## 4 Conclusion

## Implication Algebra

■ We apply the support tool to show that some axioms with three free variables in several implication algebras [Abbott, 1976, Georgacarakos, 1980, Hardegree, 1981, Chajda et al., 2001] are valid.
■ Before that, we briefly explain what implication algebras are.

- In Boolean lattices, the only implication is $p \rightarrow q=\neg p \vee q$.
- However, in orthomodular lattices, there are distinct implications defined as follows:

$$
\begin{gathered}
p \rightsquigarrow q=\neg p \vee(p \wedge q), \quad p \mapsto q=(\neg p \wedge \neg q) \vee q, \\
p \rightarrow q=((p \wedge q) \vee(\neg p \wedge q)) \vee(\neg p \wedge \neg q) .
\end{gathered}
$$

- Implication algebra: algebra which only operator is the implication (and人).
- Some implication algebras for orthomodular lattices have been proposed:

1 Quasi-implication algebra [Hardegree, 1981]
2 Ortho-implication algebra [Abbott, 1976]
3 Orthomodular implication algebra [Chajda et al., 2001]
4 Sasaki implication algebra [Georgacarakos, 1980]
5 Dishkant implication algebra [Georgacarakos, 1980]
6 Relevance implication algebra [Georgacarakos, 1980]

## Axioms in Implication Algebra

- The axiom (Q2) of quasi-implication algebra [Hardegree, 1981]:

$$
(p \rightsquigarrow q) \rightsquigarrow(p \rightsquigarrow r)=(q \rightsquigarrow p) \rightsquigarrow(q \rightsquigarrow r) .
$$

- The axiom (O2) of ortho-implication algebra [Abbott, 1976]:

$$
p \mapsto((q \mapsto p) \mapsto r)=p \mapsto r .
$$

- The axiom (O5) of orthomodular implication algebra [Chajda et al., 2001]:

$$
(((p \mapsto q) \mapsto q) \mapsto r) \mapsto(p \mapsto r)=\curlyvee
$$

- The axiom (O6) of orthomodular implication algebra [Chajda et al., 2001]:

$$
\begin{aligned}
& ((((((((p \mapsto q) \mapsto q) \mapsto r) \mapsto r) \mapsto r) \mapsto p) \mapsto p) \mapsto r) \mapsto p) \mapsto p \\
& =(((p \mapsto q) \mapsto q) \mapsto r) \mapsto r
\end{aligned}
$$

- The axiom (J4) of Sasaki implication algebra [Georgacarakos, 1980]:

$$
\begin{aligned}
& p \rightsquigarrow((p \rightsquigarrow((q \rightsquigarrow((q \rightsquigarrow r) \rightsquigarrow \curlywedge)) \rightsquigarrow \curlywedge)) \rightsquigarrow \curlywedge) \\
& =r \rightsquigarrow((r \rightsquigarrow((p \rightsquigarrow((p \rightsquigarrow q) \rightsquigarrow \curlywedge)) \rightsquigarrow \curlywedge)) \rightsquigarrow \curlywedge) .
\end{aligned}
$$

- The axiom (K5) of Dishkant implication algebra [Georgacarakos, 1980]:

$$
(((p \mapsto q) \mapsto q) \mapsto r) \mapsto r=(p \mapsto((q \mapsto r) \mapsto r)) \mapsto((q \mapsto r) \mapsto r)
$$

- The axiom (L6) of relevance implication algebra [Georgacarakos, 1980]:

$$
(((p \rightarrow q) \rightarrow q) \rightarrow r) \rightarrow r=(p \rightarrow((q \rightarrow r) \rightarrow r)) \rightarrow((q \rightarrow r) \rightarrow r) .
$$

## Experimental Result

- The axioms are verified by our tool automatically.
- Our tool is publicly available at https://github.com/canhminhdo/FOM.

| Target Axiom | Time |
| :---: | :---: |
| The axiom (Q2) in [Hardegree, 1981] | $1,213 \mathrm{~ms}$ |
| The axiom (O2) in [Abbott, 1976] | 736 ms |
| The axiom (O5) in [Chajda et al., 2001] | 705 ms |
| The axiom (O6) in [Chajda et al., 2001] | 716 ms |
| The axiom (J4) in [Georgacarakos, 1980] | 715 ms |
| The axiom (K5) in [Georgacarakos, 1980] | 723 ms |
| The axiom (L6) in [Georgacarakos, 1980] | 6d:19h:40m |

## Contents

## 1 Introduction

## 2 Theoretical Background

3 Case Studies

4 Conclusion

## Conclusion

- Using a reachability analysis, we have described how to develop the support tool for checking the word problem with three or more generators for free orthomodular lattices.
- The existing tools [Megill and Pavičić, 2001, Hyčko, 2005] cannot deal with terms that consist of three or more free variables.
■ We have conducted some case studies with the support tool to verify various complex axioms that existing tools cannot verify.


## Reference I

[Abbott, 1976] Abbott, J. C. (1976).
Orthoimplication algebras.
Studia Logica, 35:173-177.
[Beran, 1985] Beran, L. (1985).
Orthomodular lattices: algebraic approach, volume 18 of Mathematics and its Applications.
[Birkhoff and von Neumann, 1936] Birkhoff, G. and von Neumann, J. (1936).
The logic of quantum mechanics.
Annals of mathematics, 57(4):823-843.
[Bruns, 1976] Bruns, G. (1976).
Free ortholattices.
Canadian Journal of Mathematics, 28:977-985.
[Bruns and Harding, 2000] Bruns, G. and Harding, J. (2000).
Algebraic aspects of orthomodular lattices.
In Current research in operational quantum logic, volume 111 of Fundamental Theories of Physics, pages 37-65.
[Chajda et al., 2001] Chajda, I., Halas̆, R., and Länger, H. (2001).
Orthomodular implication algebras.
International Journal of Theoretical Physics, 40:1875-1884.

## Reference II

[Georgacarakos, 1980] Georgacarakos, G. N. (1980).
Equationally definable implication algebras for orthomodular lattices.
Studia Logica, 39:5-18.
[Hardegree, 1981] Hardegree, G. M. (1981).
Quasi-implication algebras, part I: Elementary theory.
Algebra Universalis, 12:30-47.
[Herrmann, 1983] Herrmann, C. (1983).
On the word problem for the modular lattice with four free generators.
Mathematische Annalen, 265:513-527.
[Hyčko, 2005] Hyčko, M. (2005).
Implications and equivalences in orthomodular lattices.
Demonstratio Mathematica, 38:777-792.
[Megill and Pavičić, 2001] Megill, N. D. and Pavičić, M. (2001).
Orthomodular lattices and a quantum algebra.
International Journal of Theoretical Physics, 40(8):1387-1410.
[Rédei, 1998] Rédei, M. (1998).
Quantum logic in algebraic approach, volume 91 of Fundamental Theories of Physics. Springer.

## Reference III

[Roddy, 1989] Roddy, M. S. (1989).
On the word problem for orthocomplemented modular lattices. Canadian Journal of Mathematics, 41:961-1004.
[Takeuchi, 1969] Takeuchi, K. (1969).
The word problem for free distributive lattices.
Journal of the Mathematical Society of Japan, 21:330-333.

