Theoretical Foundation for Equivalence Checking of Quantum Circuits

Canh Minh Do Kazuhiro Ogata

Japan Advanced Institute of Science and Technology, 1-8 Asahidai, Nomi, Japan

Presented Physically at the 2nd International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols

November 21, 2023 - Brisbane, Australia

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

- Quantum circuits are a natural model of quantum computation, comprising qubits and quantum operations (e.g., quantum gates), that can be used to design and implement quantum algorithms.
- However, quantum circuits are typically used to design quantum algorithms at a high abstraction level without considering specific hardware restrictions.
- To execute the quantum circuits on an actual quantum device, they have to undergo a *compilation* process, transforming the high abstraction level to a low abstraction level that conforms to all restrictions imposed on the targeted device.
- Consequently, the quantum circuit and its compiled counterpart are significantly different. Therefore, it is crucial to verify the equivalence of two quantum circuits constructed from quantum gates based on their functionality.

Definition 1 (Equivalence checking problem)

Given two quantum circuits constructed from by quantum gates, $U = U_m \dots U_0$ and $U' = U'_{m'} \dots U'_0$, the equivalence checking problem of U and U' is asked to check whether $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$.

- L. Burgholzer et al.¹ have proposed an advanced method for equivalence checking of quantum circuits based on two key observations:
 - Quantum circuits are inherently reversible
 - Even small differences in quantum circuits may impact the overall behavior of quantum circuits
- In this study, we present a theoretical foundation for checking the equivalence of quantum circuits, where it suffices to compare each column vector of two matrices modulo the same global phase.

¹Lukas Burgholzer and Robert Wille. "Advanced Equivalence Checking for Quantum Circuits". In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2021).

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

- A Hilbert space H usually serves as the state space of a quantum system that is a complex vector space equipped with an inner product such that each Cauchy sequence of vectors has a limit.
- An *n*-qubit system is the complex 2^n -space \mathbb{C}^{2^n} , where \mathbb{C} stands for the complex plane.
- Pure states in the *n*-qubit systems \mathbb{C}^{2^n} are unit vectors in 2^n -space \mathbb{C}^{2^n} .
- The orthogonal basis called computational basis in the one-qubit system \mathbb{C}^2 is the set $\{|0\rangle, |1\rangle\}$ that consists of the column vectors $|0\rangle = (1,0)^T$ and $|1\rangle = (0,1)^T$, where T denotes the transpose operator.
- In the two-qubit system C⁴, there are pure states that cannot be represented in the form |ψ₁⟩ ⊗ |ψ₂⟩ and called entangled states, where ⊗ denotes the tensor product (more precisely, the Kronecker product).
- For example, the EPR state (Einstein-Podolsky-Rosen state) $|EPR\rangle = (|00\rangle + |11\rangle)/\sqrt{(2)}$ is an entangled state, where $|00\rangle = |0\rangle \otimes |0\rangle$ and $|11\rangle = |1\rangle \otimes |1\rangle$.

Unitary Operators

- Quantum computation is represented by unitary operators (also called quantum gates).
- For example, the Hadamard gate *H* and Pauli gates *X*, *Y*, and *Z* are quantum gates on the one-qubit system C² and are defined as follows:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Two typical quantum gates on the two-qubit systems C⁴ are the controlled-X gate (also called the controlled-NOT gate) CX and the swap gate SWAP are defined by

$$egin{aligned} \mathcal{C} X &= |0
angle\!\langle 0|\otimes I + |1
angle\!\langle 1|\otimes X, \end{aligned} \\ \mathcal{S} \mathcal{W} A \mathcal{P} &= \mathcal{C} X(I\otimes |0
angle\!\langle 0| + X\otimes |1
angle\!\langle 1|)\mathcal{C} X, \end{aligned}$$

where I denotes the identity matrix of size 2×2 .

C.M. Do et al. (JAIST)

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

Definition 2 (Observable equivalence for quantum states)

 $|\psi\rangle \approx |\psi'\rangle$ (or $|\psi\rangle \approx_{\theta} |\psi'\rangle$ to make it clear from the context) is defined as $|\psi\rangle = e^{i\theta} |\psi'\rangle$ for some $\theta \in [0, 2\pi)$.

To check whether $|\psi\rangle \approx |\psi'\rangle$, we can check the equality of their density matrices $|\psi\rangle\langle\psi|$ and $|\psi'\rangle\langle\psi'|$. This result is derived from the following lemma.

Lemma 1

 $|\psi\rangle\approx|\psi'\rangle \text{ if and only if } |\psi\rangle\!\langle\psi|=|\psi'\rangle\!\langle\psi'|.$

Proof.

For the 'only if' part (the \Rightarrow direction), it is straightforward.

C.M. Do et al. (JAIST)

Proof (Cont.)

- We now consider the 'if' part (the \Leftarrow direction). Let $\{|\phi_0\rangle, \ldots, |\phi_i\rangle, \ldots, |\phi_{2^n-1}\rangle\}$ be an orthonormal basis of \mathcal{H} with *n* dimension. $|\psi\rangle = c_0 |\phi_0\rangle + \cdots + c_i |\phi_i\rangle + \cdots + c_{2^{n-1}} |\phi_{2^n-1}\rangle$ and $|\psi'\rangle = c'_0 |\phi_0\rangle + \cdots + c'_i |\phi_i\rangle + \cdots + c'_{2^{n-1}} |\phi_{2^n-1}\rangle$. - Let A and A' be $2^n \times 2^n$ matrices denoting $|\psi\rangle\langle\psi|$ and $|\psi'\rangle\langle\psi'|$, respectively. The elements of matrix A are calculated as $a_{ij} = \langle\phi_i|A|\phi_j\rangle = \langle\phi_i|\psi\rangle\langle\psi|\phi_j\rangle = c_ic_j^*$ and similarly for $a'_{ij} = c'_ic'_j^*$. - We have $a_{ij} = a'_{ij}$ for any $i, j \in [0 \dots 2^n - 1]$ because of A = A' from the assumption. Let us consider $a_{ii} = a'_{ii}$ as follows:

$$a_{ii} = a'_{ii}$$

$$\Leftrightarrow c_i c_i^* = c'_i c'^*_i$$

$$\Leftrightarrow r e^{i\alpha} (r.e^{i\alpha})^* = r' e^{i\alpha'} (r' e^{i\alpha'})^*$$

$$\Leftrightarrow r = r'$$

(by the exponential form of complex numbers) (because r and r' are non-negative numbers)

Proof (Cont.)

We have c_i = re^{iα}, c'_i = r'e^{iα'}, and r = r', where i ∈ [0...2ⁿ - 1]. Let us consider two cases:
If r = r' = 0, then it is immediate that c_i = e^{iθ_i}c'_i for some θ_i ∈ [0, 2π).
If r = r' ≠ 0, then we have c_i = re^{iα}/(c'_i) = e^{i(α-α')} = e^{iθ_i}, where θ_i = α - α'. Then, we have c_i = e^{iθ_i}c'_i for some θ_i ∈ [0, 2π).
Therefore, for all i ∈ [0...2ⁿ - 1], there exists θ_i ∈ [0, 2π) such that c_i = e^{iθ_i}c'_i. Now let us consider a_{ij} = a'_{ij} as follows:

$$\begin{aligned} a_{ij} &= a'_{ij} \\ \Leftrightarrow c_i c_j^* &= c'_i c_j'^* \\ \Leftrightarrow e^{i\theta_i} c'_i (e^{i\theta_j} c'_j)^* &= c'_i c'_j^* \\ \Leftrightarrow e^{i(\theta_i - \theta_j)} c'_i c'_j^* &= c'_i c'_j^* \end{aligned}$$
 (by the result above)

Therefore, we have $\theta_i = \theta_j$ for any $c_i, c_j \neq 0$. It indicates that $|\psi\rangle = e^{i\theta} |\psi'\rangle$ for some $\theta \in [0, 2\pi)$. From Definition 2, we have $|\psi\rangle \approx |\psi'\rangle$.

C.M. Do et al. (JAIST)

Theoretical Foundation for Equivalence Checking of

November 21, 2023

13/24

Recall to check the equivalence of quantum circuits U and U', we need to check whether $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$. We can use the following lemma to solve this problem.

Lemma 2

Let U and U' be $2^n \times 2^n$ unitary matrices, then $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$ if and only if $U |\psi\rangle \approx_{\theta} U' |\psi\rangle$ for any vector $|\psi\rangle \in \mathcal{H}$.

Proof.

Straightforward.

In Lemma 2, it is unfeasible to consider any vector $|\psi\rangle \in \mathcal{H}$ because there are infinite vectors in \mathcal{H} . Therefore, we introduce the following lemma to help us to check whether $U = e^{i\theta}U'$.

Lemma 3

Let U and U' be $2^n \times 2^n$ matrices, then $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$ if and only if $U |\phi_i\rangle \approx_{\theta} U' |\phi_i\rangle$ for each basis vector $|\phi_i\rangle$ in an orthonormal basis of \mathcal{H} .

Proof.

Straightforward.

Remark (Important)

Checking $U |\psi_i\rangle \approx_{\theta} U' |\psi_i\rangle$ is actually checking the observable equivalence of the *i*-th column vector of U and the *i*-th column vector of U' with respect to the same phase θ .

IF To check $U |\phi_i\rangle \approx_{\theta} U' |\phi_i\rangle$ for each basis vector $|\phi_i\rangle$ in an orthonormal basis of \mathcal{H} .

Lemma 4

 $U |\phi_i\rangle \approx_{\theta} U' |\phi_i\rangle$ for each basis vector $|\phi_i\rangle$ in an orthonormal basis of \mathcal{H} if and only if $U |\phi_i\rangle \approx U' |\phi_i\rangle$ for each $|\phi_i\rangle$ and $U |\phi_i\rangle (U |\phi_j\rangle)^{\dagger} = U' |\phi_i\rangle (U' |\phi_j\rangle)^{\dagger}$ for each $|\phi_i\rangle$ and $|\phi_j\rangle$.

Proof.

For the 'only if' part (the \Rightarrow direction), we have $U |\phi_i\rangle \approx U' |\phi_i\rangle$ for each basis vector $|\phi_i\rangle$ using the assumption. Moreover, we have $U |\phi_i\rangle = e^{i\theta}U' |\phi_i\rangle$ and $U |\phi_j\rangle = e^{i\theta}U' |\phi_j\rangle$ for each $|\phi_i\rangle$ and $|\phi_j\rangle$. Therefore, $U |\phi_i\rangle (U |\phi_j\rangle)^{\dagger} = e^{i\theta}U' |\phi_i\rangle (e^{i\theta}U' |\phi_j\rangle)^{\dagger} = U' |\phi_i\rangle (U' |\phi_j\rangle)^{\dagger}$

Proof (Cont.)

For the '*if*' part (the \Leftarrow direction), we have $U |\phi_i\rangle = e^{i\theta_i} U' |\phi_i\rangle$ and $U |\phi_j\rangle = e^{i\theta_j} U' |\phi_j\rangle$ for each $|\phi_i\rangle$ and $|\phi_j\rangle$ using the first condition in the assumption. Using the second condition in the assumption, we have as follows:

$$egin{aligned} &U \ket{\phi_i} \left(U \ket{\phi_j}
ight)^\dagger = U' \ket{\phi_i} \left(U' \ket{\phi_j}
ight)^\dagger \ \Leftrightarrow e^{i heta_i} U' \ket{\phi_i} \left(e^{i heta_j} U' \ket{\phi_j}
ight)^\dagger = U' \ket{\phi_i} \left(U' \ket{\phi_j}
ight)^\dagger \ \Leftrightarrow e^{i (heta_i - heta_j)} U' \ket{\phi_i} \left(U' \ket{\phi_j}
ight)^\dagger = U' \ket{\phi_i} \left(U' \ket{\phi_j}
ight)^\dagger \end{aligned}$$

Therefore, we have $\theta_i = \theta_j$ for each $|\phi_i\rangle$ and $|\phi_j\rangle$. It indicates that $U |\phi_i\rangle \approx_{\theta} U' |\phi_i\rangle$ for each basis vector $|\phi_i\rangle$.

From Lemma 1, Lemma 3 and Lemma 4, we have the main theorem to check whether $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$.

Theorem 1

Let U and U' be $2^n \times 2^n$ matrices, then $U = e^{i\theta}U'$ for some $\theta \in [0, 2\pi)$ if and only if $U |\phi_i\rangle (U |\phi_i\rangle)^{\dagger} = U' |\phi_i\rangle (U' |\phi_i\rangle)^{\dagger}$ for each basis vector ϕ_i and $U |\phi_i\rangle (U |\phi_j\rangle)^{\dagger} = U' |\phi_i\rangle (U' |\phi_j\rangle)^{\dagger}$ for each $|\phi_i\rangle$ and $|\phi_j\rangle$ in an orthonormal basis of \mathcal{H} .

Proof.

It is immediate from Lemma 1, Lemma 3 and Lemma 4.

- It is extremely expensive to calculate matrix-matrix multiplications $U_m \ldots U_0$ and $U'_{m'} \ldots U'_0$ to obtain U and U' and multiple with each $|\phi_i\rangle$ and $|\phi_j\rangle$ in Theorem 1.
- We can perform a series of matrix-vector multiplications between unitary matrices and vectors in sequence as follows:

$$\left|u_{i}^{0}\right\rangle = U_{0}\left|\phi_{i}\right\rangle, \left|u_{i}^{1}\right\rangle = U_{1}\left|u_{i}^{0}\right\rangle, \ldots, \left|u_{i}^{m}\right\rangle = U_{m} \cdot u_{i}^{m-1}$$

where the *i*-th column vector of matrix U is $|u_i\rangle$ (i.e., $|u_i^m\rangle$) and similarly for the *i*-th column vector $|u_i'\rangle$ of matrix U'.

- For the first condition in Theorem 1, we check whether $|u_i\rangle\langle u_i|$ is equal to $|u'_i\rangle\langle u'_i|$.
- For the second condition in Theorem 1, it suffices to fix $|u_i\rangle$ and $|u'_i\rangle$, and check whether $|u_i\rangle\langle u_j| = |u'_i\rangle\langle u'_j|$ for all $j \neq i$.

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum CircuitsTheoretical Foundation

An Algorithm

An Algorithm

Algorithm 1: Equivalence Checking of Quantum Circuits input : n - the dimension of a Hilbert space $U = U_m \dots U_0$ and $U' = U'_{m'} \dots U'_0$ - two quantum circuits $\{|\phi_0\rangle, \dots, |\phi_{2^n-1}\rangle\}$ - an orthonormal basis of a Hilbert space \mathcal{H} $\theta \in [0, 2\pi)$ - the phase output: True $(U = e^{i\theta}U')$ or False $(U \neq e^{i\theta}U')$ 1 forall $|\phi_i\rangle \in \{|\phi_0\rangle, \dots, |\phi_{2^n-1}\rangle\}$ do 2 $||u_i\rangle = U_m \cdot (\dots (U_0 \cdot |\phi_i\rangle) \dots)$

3
$$|u_i\rangle = U_{m'} \cdot (\dots (U_0 \cdot |\phi_i\rangle) \dots)$$

4 if $|u_i\rangle\langle u_i| \neq |u'_i\rangle\langle u'_i|$ then
5 | return False
6 if $i \neq 0 \land |u_0\rangle\langle u_i| \neq |u'_0\rangle\langle u'_i|$ then
7 | return False

8 return True

2 Basic Notations on Quantum Computation

3 Equivalence Checking of Quantum Circuits

- Theoretical Foundation
- An Algorithm

- We have presented a theoretical foundation for checking the equivalence of quantum circuits based on which an algorithm is also constructed.
- The equivalence checking process is simplified to comparing each column vector of two unitary matrices, representing two quantum circuits, modulo the same global phase.
- As one piece of future work, we would develop a support tool based on symbolic reasoning in²³ for our approach and conduct case studies to demonstrate the effectiveness of our approach for equivalence checking of quantum circuits.

²Canh Minh Do and Kazuhiro Ogata. "Symbolic Model Checking Quantum Circuits in Maude". In: The 35th International Conference on Software Engineering and Knowledge Engineering, SEKE 2023. 2023.

³Tsubasa Takagi, Canh Minh Do, and Kazuhiro Ogata. "Automated Quantum Program Verification in Dynamic Quantum Logic". In: *DaLí:* Dynamic Logic – New trends and applications. 2023.

Thank You!