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Introduction

Quantum circuits are a natural model of quantum computation, comprising qubits and
quantum operations (e.g., quantum gates), that can be used to design and implement
quantum algorithms.
However, quantum circuits are typically used to design quantum algorithms at a high
abstraction level without considering specific hardware restrictions.
To execute the quantum circuits on an actual quantum device, they have to undergo a
compilation process, transforming the high abstraction level to a low abstraction level that
conforms to all restrictions imposed on the targeted device.
Consequently, the quantum circuit and its compiled counterpart are significantly different.
Therefore, it is crucial to verify the equivalence of two quantum circuits constructed from
quantum gates based on their functionality.
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Equivalence Checking Problem for Quantum Circuits

Definition 1 (Equivalence checking problem)

Given two quantum circuits constructed from by quantum gates, U = Um . . .U0 and
U ′ = U ′

m′ . . .U ′
0, the equivalence checking problem of U and U ′ is asked to check whether

U = e iθU ′ for some θ ∈ [0, 2π).

L. Burgholzer et al.1 have proposed an advanced method for equivalence checking of
quantum circuits based on two key observations:

Quantum circuits are inherently reversible
Even small differences in quantum circuits may impact the overall behavior of quantum
circuits

In this study, we present a theoretical foundation for checking the equivalence of quantum
circuits, where it suffices to compare each column vector of two matrices modulo the same
global phase.

1Lukas Burgholzer and Robert Wille. “Advanced Equivalence Checking for Quantum Circuits”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2021).
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Hilbert Spaces

A Hilbert space H usually serves as the state space of a quantum system that is a complex
vector space equipped with an inner product such that each Cauchy sequence of vectors
has a limit.
An n-qubit system is the complex 2n-space C2n , where C stands for the complex plane.
Pure states in the n-qubit systems C2n are unit vectors in 2n-space C2n .
The orthogonal basis called computational basis in the one-qubit system C2 is the set
{|0⟩ , |1⟩} that consists of the column vectors |0⟩ = (1, 0)T and |1⟩ = (0, 1)T , where T

denotes the transpose operator.
In the two-qubit system C4, there are pure states that cannot be represented in the form
|ψ1⟩ ⊗ |ψ2⟩ and called entangled states, where ⊗ denotes the tensor product (more
precisely, the Kronecker product).
For example, the EPR state (Einstein-Podolsky-Rosen state) |EPR⟩ = (|00⟩+ |11⟩)/

√
(2)

is an entangled state, where |00⟩ = |0⟩ ⊗ |0⟩ and |11⟩ = |1⟩ ⊗ |1⟩.
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Unitary Operators

Quantum computation is represented by unitary operators (also called quantum gates).
For example, the Hadamard gate H and Pauli gates X , Y , and Z are quantum gates on
the one-qubit system C2 and are defined as follows:

H =
1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Two typical quantum gates on the two-qubit systems C4 are the controlled-X gate (also
called the controlled-NOT gate) CX and the swap gate SWAP are defined by

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X ,

SWAP = CX (I ⊗ |0⟩⟨0|+ X ⊗ |1⟩⟨1|)CX ,

where I denotes the identity matrix of size 2 × 2.
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Theoretical Foundation

Definition 2 (Observable equivalence for quantum states)

|ψ⟩ ≈ |ψ′⟩ (or |ψ⟩ ≈θ |ψ′⟩ to make it clear from the context) is defined as |ψ⟩ = e iθ |ψ′⟩ for
some θ ∈ [0, 2π).

☞ To check whether |ψ⟩ ≈ |ψ′⟩, we can check the equality of their density matrices |ψ⟩⟨ψ| and
|ψ′⟩⟨ψ′|. This result is derived from the following lemma.

Lemma 1

|ψ⟩ ≈ |ψ′⟩ if and only if |ψ⟩⟨ψ| = |ψ′⟩⟨ψ′|.

Proof.
For the ‘only if ’ part (the ⇒ direction), it is straightforward.
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Proof (Cont.)
- We now consider the ‘if ’ part (the ⇐ direction). Let {|ϕ0⟩ , . . . , |ϕi ⟩ , . . . |ϕ2n−1⟩} be an
orthonormal basis of H with n dimension. |ψ⟩ = c0 |ϕ0⟩+ · · ·+ ci |ϕi ⟩+ · · ·+ c2n−1 |ϕ2n−1⟩ and
|ψ′⟩ = c ′0 |ϕ0⟩+ · · ·+ c ′i |ϕi ⟩+ · · ·+ c ′2n−1 |ϕ2n−1⟩.
- Let A and A’ be 2n × 2n matrices denoting |ψ⟩⟨ψ| and |ψ′⟩⟨ψ′|, respectively. The elements of
matrix A are calculated as aij = ⟨ϕi |A |ϕj⟩ = ⟨ϕi |ψ⟩ ⟨ψ|ϕj⟩ = cic

∗
j and similarly for a′ij = c ′i c

′∗
j .

- We have aij = a′ij for any i , j ∈ [0 . . . 2n − 1] because of A = A’ from the assumption. Let us
consider aii = a′ii as follows:

aii = a′ii

⇔ cic
∗
i = c ′i c

′∗
i

⇔ re iα(r .e iα)∗ = r ′e iα
′
(r ′e iα

′
)∗ (by the exponential form of complex numbers)

⇔ r = r ′ (because r and r’ are non-negative numbers)
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Proof (Cont.)

We have ci = re iα, c ′i = r ′e iα
′
, and r = r ′, where i ∈ [0 . . . 2n − 1]. Let us consider two cases:

If r = r ′ = 0, then it is immediate that ci = e iθi c ′i for some θi ∈ [0, 2π).

If r = r ′ ̸= 0, then we have ci
c ′i

= re iα

r ′e iα′ = e i(α−α′) = e iθi , where θi = α− α′. Then, we

have ci = e iθi c ′i for some θi ∈ [0, 2π).
Therefore, for all i ∈ [0 . . . 2n − 1], there exists θi ∈ [0, 2π) such that ci = e iθi c ′i . Now let us
consider aij = a′ij as follows:

aij = a′ij

⇔ cic
∗
j = c ′i c

′∗
j

⇔ e iθi c ′i (e
iθj c ′j )

∗ = c ′i c
′∗
j (by the result above)

⇔ e i(θi−θj )c ′i c
′∗
j = c ′i c

′∗
j

Therefore, we have θi = θj for any ci , cj ̸= 0. It indicates that |ψ⟩ = e iθ |ψ′⟩ for some
θ ∈ [0, 2π). From Definition 2, we have |ψ⟩ ≈ |ψ′⟩.
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☞ Recall to check the equivalence of quantum circuits U and U ′, we need to check whether
U = e iθU ′ for some θ ∈ [0, 2π). We can use the following lemma to solve this problem.

Lemma 2

Let U and U ′ be 2n × 2n unitary matrices, then U = e iθU ′ for some θ ∈ [0, 2π) if and only if
U |ψ⟩ ≈θ U

′ |ψ⟩ for any vector |ψ⟩ ∈ H.

Proof.
Straightforward.
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☞ In Lemma 2, it is unfeasible to consider any vector |ψ⟩ ∈ H because there are infinite vectors
in H. Therefore, we introduce the following lemma to help us to check whether U = e iθU ′.

Lemma 3

Let U and U ′ be 2n × 2n matrices, then U = e iθU ′ for some θ ∈ [0, 2π) if and only if
U |ϕi ⟩ ≈θ U

′ |ϕi ⟩ for each basis vector |ϕi ⟩ in an orthonormal basis of H.

Proof.
Straightforward.

Remark (Important)
Checking U |ψi ⟩ ≈θ U

′ |ψi ⟩ is actually checking the observable equivalence of the i-th column
vector of U and the i-th column vector of U ′ with respect to the same phase θ.
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☞ To check U |ϕi ⟩ ≈θ U
′ |ϕi ⟩ for each basis vector |ϕi ⟩ in an orthonormal basis of H.

Lemma 4

U |ϕi ⟩ ≈θ U
′ |ϕi ⟩ for each basis vector |ϕi ⟩ in an orthonormal basis of H if and only if

U |ϕi ⟩ ≈ U ′ |ϕi ⟩ for each |ϕi ⟩ and U |ϕi ⟩ (U |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)† for each |ϕi ⟩ and |ϕj⟩.

Proof.
For the ‘only if ’ part (the ⇒ direction), we have U |ϕi ⟩ ≈ U ′ |ϕi ⟩ for each basis vector |ϕi ⟩
using the assumption. Moreover, we have U |ϕi ⟩ = e iθU ′ |ϕi ⟩ and U |ϕj⟩ = e iθU ′ |ϕj⟩ for each
|ϕi ⟩ and |ϕj⟩. Therefore, U |ϕi ⟩ (U |ϕj⟩)† = e iθU ′ |ϕi ⟩ (e iθU ′ |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)†
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Proof (Cont.)

For the ‘if ’ part (the ⇐ direction), we have U |ϕi ⟩ = e iθiU ′ |ϕi ⟩ and U |ϕj⟩ = e iθjU ′ |ϕj⟩ for
each |ϕi ⟩ and |ϕj⟩ using the first condition in the assumption.
Using the second condition in the assumption, we have as follows:

U |ϕi ⟩ (U |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)†

⇔ e iθiU ′ |ϕi ⟩ (e iθjU ′ |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)†

⇔ e i(θi−θj )U ′ |ϕi ⟩ (U ′ |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)†

Therefore, we have θi = θj for each |ϕi ⟩ and |ϕj⟩. It indicates that U |ϕi ⟩ ≈θ U
′ |ϕi ⟩ for each

basis vector |ϕi ⟩.
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Our Main Theorem

☞ From Lemma 1, Lemma 3 and Lemma 4, we have the main theorem to check whether
U = e iθU ′ for some θ ∈ [0, 2π).

Theorem 1

Let U and U ′ be 2n × 2n matrices, then U = e iθU ′ for some θ ∈ [0, 2π) if and only if
U |ϕi ⟩ (U |ϕi ⟩)† = U ′ |ϕi ⟩ (U ′ |ϕi ⟩)† for each basis vector ϕi and
U |ϕi ⟩ (U |ϕj⟩)† = U ′ |ϕi ⟩ (U ′ |ϕj⟩)† for each |ϕi ⟩ and |ϕj⟩ in an orthonormal basis of H.

Proof.
It is immediate from Lemma 1, Lemma 3 and Lemma 4.
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An Efficient Way to Calculate for Our Main Theorem

It is extremely expensive to calculate matrix-matrix multiplications Um . . .U0 and
U ′
m′ . . .U ′

0 to obtain U and U ′ and multiple with each |ϕi ⟩ and |ϕj⟩ in Theorem 1.
We can perform a series of matrix-vector multiplications between unitary matrices and
vectors in sequence as follows:∣∣u0

i

〉
= U0 |ϕi ⟩ ,

∣∣u1
i

〉
= U1

∣∣u0
i

〉
, . . . , |umi ⟩ = Um · um−1

i

where the i-th column vector of matrix U is |ui ⟩ (i.e., |umi ⟩) and similarly for the i-th
column vector |u′i ⟩ of matrix U ′.
For the first condition in Theorem 1, we check whether |ui ⟩⟨ui | is equal to |u′i ⟩⟨u′i |.
For the second condition in Theorem 1, it suffices to fix |ui ⟩ and |u′i ⟩, and check whether

|ui ⟩⟨uj | =
∣∣∣u′i〉〈u′j ∣∣∣ for all j ̸= i .
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An Algorithm

Algorithm 1: Equivalence Checking of Quantum Circuits
input : n – the dimension of a Hilbert space

U = Um . . .U0 and U ′ = U ′
m′ . . .U ′

0 – two quantum circuits
{|ϕ0⟩ , . . . , |ϕ2n−1⟩} – an orthonormal basis of a Hilbert space H
θ ∈ [0, 2π) – the phase

output: True (U = e iθU ′) or False (U ̸= e iθU ′)

1 forall |ϕi ⟩ ∈ {|ϕ0⟩ , . . . , |ϕ2n−1⟩} do
2 |ui ⟩ = Um · (. . . (U0 · |ϕi ⟩) . . . )
3 |u′i ⟩ = U ′

m′ · (. . . (U ′
0 · |ϕi ⟩) . . . )

4 if |ui ⟩⟨ui | ≠ |u′i ⟩⟨u′i | then
5 return False
6 if i ̸= 0 ∧ |u0⟩⟨ui | ≠ |u′0⟩⟨u′i | then
7 return False
8 return True
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Conclusions and Future Work

We have presented a theoretical foundation for checking the equivalence of quantum
circuits based on which an algorithm is also constructed.
The equivalence checking process is simplified to comparing each column vector of two
unitary matrices, representing two quantum circuits, modulo the same global phase.
As one piece of future work, we would develop a support tool based on symbolic reasoning
in23 for our approach and conduct case studies to demonstrate the effectiveness of our
approach for equivalence checking of quantum circuits.

2Canh Minh Do and Kazuhiro Ogata. “Symbolic Model Checking Quantum Circuits in Maude”. In: The 35th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2023. 2023.

3Tsubasa Takagi, Canh Minh Do, and Kazuhiro Ogata. “Automated Quantum Program Verification in Dynamic Quantum Logic”. In: DaLí:
Dynamic Logic – New trends and applications. 2023.
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Thank You!
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